整数的符号是z表示,实数集用R表示。在集合论里,自然数集N是包括元素“0”的。若是指一般的自然数(集)(即不包括元素“0”)用N+或N*表示,其中符号+或*是上标。
正整数和负整数:
1、正整数
它是从古代以来人类计数的工具。可以说,从“1头牛,2头牛”或是“5个人,6个人”抽象化成正整数的过程是相当自然的。
2、零
零不仅表示“没有”(“无”),更是表示空位的符号。中国古代用算筹计算数并进行运算时,空位不放算筹,虽无空 位记号,但仍能为位值记数与四则运算创造良好的条件。印度-阿拉伯命数法中的零(zero)来自印度的(Sunya)字,其原意也是“空”或“空白”。
3、负整数
中国最早引进了负数。《九章算术。方程》中论述的“正负数”,就是整数的加减法。减法的需要也促进了负整数的引入。减法运算可看作求解方程,如果a、b是自然数,则所给方程未必有自然数解。为了使它恒有解,就有必要把自然数系扩大为整数系。
整数的符号是Z。
整数集用Z表示,实数集用R表示。在集合论里,自然数集N是包括元素“0”的。若是指一般的自然数(集)(即不包括元素“0”)用N+或N*表示,其中符号+或*是上标。
整数(integer)是序列中所有数的统称,包括负整数、零与正整数,不册者包括小数、分数。整数的全体构成整数集,整数集是一个数环。整数中,能够被2整除的数,叫做偶数。不能被2整除的数春扰则叫做奇数。
介绍:
在数学里用大写符号Z表示全体整数的集合,包括正整数、0、负整数。扒姿旦整数的全体构成整数集,整数集是一个数环。在整数系中,零和正整数统称为自然数。
-1、-2、-3、…、-n、…(n为非零自然数)为负整数。则正整数、零与负整数构成整数系。整数不包括小数、分数。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)