#include <reg52.h>
#include <intrins.h>
#define uchar unsigned char
sbit CS=P3^5
sbit Clk=P1^6 //时钟
sbit DO=P3^7 //ADC0832输出引链敏脚
sbit DI=P3^6 //ADC0832输入引脚
sbit key=P3^3 //按键
bit keydownflg// *** 作位的定义
bit adc_flg
uchar dat,channel
uchar key_buffer
uchar P2_buffer
uchar Beep_cnt
uchar disp_cnt
uchar count4ms
uchar disp_buff[5] //数码管显示缓存
uchar codeTab1[]={0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80,0x90,0x88,0x83,0xA7,0xA1,0x86,0x8E}//共阳数码表
uchar code Tab[5]={0x7f,0xbf,0xdf,0xef,0xf7} //数码管位选表
uchar A_D(uchar CH) //AD函数
{
uchar i,adval,test //定义局部变量并初始戚唤段化
adval=0x00
test=0x00
Clk=0//clk低电平
DI=1 //DI初始高电平在第一个时钟脉冲的下降沿前保持高电平,表示启动信号
_nop_()
CS=0 //片选
_nop_()
Clk=1//clk上升沿,起始位写入
_nop_()
if(CH==0x00) //选择通道0
{
Clk=0 //clk低电平
DI=1
_nop_()
Clk=1 /高誉/clk上升沿,通道0的第一位写入
_nop_()
Clk=0
DI=1
_nop_()
Clk=1 //clk上升沿,通道0的第二位写入
_nop_()
}
else
{
Clk=0
DI=1
_nop_()
Clk=1 //clk上升沿,通道1的第一位写入
_nop_()
Clk=0
DI=1
_nop_() //clk上升沿,通道1的第二位写入
Clk=1
_nop_()
}
Clk=0
DI=1
for(i=0i<8i++)//从高位向低位读取八位AD值
{
_nop_()
adval<<=1
Clk=1
_nop_()
Clk=0
if(DO)
adval|=0x01
else
adval|=0x00
}
for(i=0i<8i++)
{
test>>=1//从低位向高位读取八位AD值
if(DO)
test|=0x80
else
test|=0x00
_nop_()
Clk=1
_nop_()
Clk=0
}
if(adval==test)dat=test//判断两个读取值是否相等相等就把读取的数赋值给DAT
_nop_()
CS=1
DO=1
Clk=1
return dat
}
void FillDispBuffer(void) //数码管显示缓存函数
{
disp_buff[0]=channel //显示通道
disp_buff[1]=12//显示"C"
disp_buff[2]=dat/51 //显示个位
disp_buff[3]=dat%51*10/51 //显示十分位
disp_buff[4]=((dat%51)*10%51)*10/51 //显示百分位
}
void dealkey(void) //按键处理
{
if(keydownflg) return //keydownflg控制位为1,不对按键进行处理
key_buffer=P2
if((key_buffer&0x80)!=0x80) channel=0//选择通道0
if((key_buffer&0x40)!=0x40) channel=1//选择通道1
FillDispBuffer()//数码管显示缓存
Beep_cnt=0
keydownflg=1 //keydownflg控制位置1
}
void main(void) //主函数
{
P0=0xff //初始化
P2=0xff
dat=0x00
disp_cnt=0
count4ms=0
channel=0
TMOD=0x10
TH0=(65535-4000)/256
TL0=(65535-4000)%256
EA=1
TR0=1
ET0=1
while(1)
{
if(adc_flg) //ADC转换控制位,防止输入与输出产生冲突
{
adc_flg=0
A_D(channel) //ADC函数
FillDispBuffer() //数码管显示缓存
}
if(!key) //按键
dealkey()
}
}
void T0_service(void)interrupt 1 //定时器0中断子函数
{
TH0=(65535-4000)/256
TL0=(65535-4000)%256
P2_buffer=Tab[disp_cnt] //查表,数码管的位选择
if(keydownflg) //蜂鸣器0.4s的短时间鸣叫
{
P2_buffer=P2_buffer&0xfe
Beep_cnt++
if(Beep_cnt==100)keydownflg=0
}
P2=P2_buffer //数码管显示数字符号
if(disp_cnt==2) //第三位数码管显示小数点
P0=Tab1[disp_buff[disp_cnt]]&0x7f
else
P0=Tab1[disp_buff[disp_cnt]]
disp_cnt++ //
if(disp_cnt==5) disp_cnt=0
count4ms++
if(count4ms==50) //0.2s ADC转换一次
{
adc_flg=1
count4ms=0
}
}
您好,DC0832 为8位分辨率A/D转换芯片,其樱山最高分辨可达256级,可以适应一般的模拟量转换要求。其内部电源输入与参考电压的复用,使得芯片的模拟电压输入在0~5V之间。芯桥肆片转换时间仅为32μS,据有双数据输出可作为数据校验,以减少敏颂轿数据误差,转换速度快且稳定性能强。独立的芯片使能输入,使多器件挂接和处理器控制变的更加方便。通过DI 数据输入端,可以轻易的实现通道功能的选择。ADC0832 数据读取程序流程: 为了高速有效的实现通信,我们采用汇编语言编写接口程序。由于ADC0832 的数据转换时间仅为32μS,所以A/D转换的数据采样频率可以很快,从而也保证的某些场合对A/D 转换数据实时性的要求。数据读取程序以子程序调用的形式出现,方便了程序的移植。
程序占用资源有累加器A,工作寄存器R7, 通用寄存器B 和特殊寄存器CY。通道功能寄存器和转换值共用寄存器B。在使用转换子程序之前必须确定通道功能寄存器B 的值,其赋值语句为“MOV B,#data”(00H~03H)。运行转换子程序后的转换数据值被放入B 中。子程序退出后即可以对B 中数据处理。
AD0832是8位逐次逼近模数转换器,可支持两个单端输入通道和一个差分输入通道。是8位逐次逼近模数转换器,可支持两个单端输入通道和一个差分输入通道。
当ADC0832未工作时其CS输入端应为高电平,此时芯判闷片禁用,当要进行A/D转换时,
须先将CS使能端置于低电平并且保持低电平直到转换完全结束。此时芯片开始转换工作,同时由处理器向芯片时钟输入端CLK输入时钟脉冲,DO/DI端则使用DI端输入通道功能选择的数据信号。在第1个时钟脉冲的下沉之前DI端必须是高电平,表示启始信号。在第2、3个脉冲下沉之前DI端应输入2位数据用于选择通道功能,
当此2位数据为“1”、“0”时,只对CH0进行单通道转换。
当2位数据为“1”、“1”时,只对CH1进行单通道转换。
当2位数据为“0”、“0”时,将CH0作为正输入端IN+,CH1作为负输入端IN-进行输入。
当2位数据为“0”、“1”时,将CH0作为负输入端IN-,CH1作为正输入端IN+进行输入。
在完成输入启动位、通道选择之后,就可以开始读出数据,转换得到的数据会被送出二次,一次高位在前传送,一次低位在前传送,连续送出。在程序读取二个数据后,我们可以加上检验来看看数据是否被正确读取。
由于ADC0832是8位分辨率,返回的数值在0~255之间,对应模拟数值为0~5V,因此每一档对应的电压值约为0.0196V。大家可以在通道输入端引入模拟信号(0~5V)进行测试,比如可以在通道脚和地之间接入电池来测试电池电压值。为使两位数码管显示电压值大小,在写余销程序是可将对应比值改位0.196,同理,如果想要显示精度更竖冲游高,可用三位或四位显示,那么响应的改一下比值为1.96或19.6,当然,需要注意你所得数据的大小是否超出数据类型的大小。
时序图
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)