急求一段用matlab编程的BP神经网络的人脸识别程序 可以运行的 急用啊 谢谢各位大哥了

急求一段用matlab编程的BP神经网络的人脸识别程序 可以运行的 急用啊 谢谢各位大哥了,第1张

function []=TwoDPCA

%%%%%%%%%%%%%特征脸显示已正确,悉掘派训练与测试没有分开。

% Face recognition

clear all

close all

clc

M=200%%%%

traincopy=5%%%表示同一个人有几张相片。

eignum=3%%%选取的特征个数。

cel=cell(1,M)

cellafter=cell(1,M)

tt=clock

S=[]

ii=1

str=strcat('E:\三维人脸\2dfacedatabase\ORL\s1\1.pgm')

img=imread(str)

[ia ib]=size(img)

sum=zeros(ia,ib)

B=zeros(ia,ib)

for i=1:40

for j=1:5

str=strcat('E:\三维人脸\2dfacedatabase\ORL\s',int2str(i),'\',int2str(j),'.pgm')

eval('img=imread(str)')

sum=double(sum)+double(img)

cel{1,ii}=img

ii=ii+1

end

end

meanA=sum/M

cov=zeros(ib)

for i=1:M

img=cel{1,i}

B=double(img)-double(meanA)

temp=B'*B

cov=double(cov)+double(temp)

end

[vv dd]=eig(cov)

num2=size(vv)

% Sort and eliminate those whose eigenvalue is zero

v=[]

d=[]

for i=1:size(vv,2)

if(dd(i,i)>散盯1e-4)

v=[v vv(:,i)]

d=[d dd(i,i)]

end

end

num1=size(v,2)

%sort, will return an ascending sequence

[B index]=sort(d)

ind=zeros(size(index))

dtemp=zeros(size(index))

vtemp=zeros(size(v))

len=length(index)

for i=1:len

dtemp(i)=B(len+1-i)

ind(i)=len+1-index(i)

vtemp(:,ind(i))=v(:,i)

end

d=dtemp

v=vtemp

imgafter=[]

for i=1:M

for j=1:eignum

img=cel{1,i}

temp1=double(img)*double(v(:,j))

imgafter=[imgafter temp1]

end

cellafter{1,i}=imgafter

imgafter=[]

end

timeconsume=etime(clock,tt)

testimg=M/traincopy

findimgnum=traincopy

suc=0

% figure(5)

for k=1:testimg

InputImage =imread(strcat('E:\三维人脸睁贺\2dfacedatabase\ORL\s',int2str(k),'\10.pgm'))

testafter=[]

for j=1:eignum

temp=double(InputImage)*double(v(:,j))

testafter=[testafter temp]

end

% Find Euclidean distance

e=[]

for i=1:M

tempA=double(testafter)-double(cellafter{1,i})

total=0

for j=1:eignum

aa=norm(tempA(:,j))

total=total+aa

end

e=[e total]

end

[C index]=sort(e)

min=index(1)

%%%%%%%计算正确率

testingroup=floor((min-1)/traincopy)+1%%计算要测试的图像所在的组

if testingroup==k

suc=suc+1

else

fprintf('%d.jpg fails to match!\n',k)

end

% %%%%%%%%%%%%%%%%%%%显示所有找到的与测试图像为同一个人的图片(可)。(显示所有与测试图片最小距离的那组,而不是比较出来的最小的5个)

% subplot(testimg,findimgnum+1,(k-1)*(findimgnum+1)+1)% subplot(行数,列数,放图像位置的序数)

% imshow(InputImage)

%

% for i=1:findimgnum

% temppos=(testingroup-1)*traincopy+i

% str=strcat('E:\三维人脸\testpic\orl\',int2str(temppos),'.pgm') %concatenates two strings that form the name of the image

% eval('img1=imread(str)')

% subplot(testimg,findimgnum+1,(k-1)*(findimgnum+1)+i+1)

% imshow(img1)

% drawnow

% end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

end

sucrate=suc/M*traincopy*100

fprintf('%2.1f%% matched successfully!\n',sucrate)

fprintf('it takes %3.2f S\n',timeconsume)

python使用dlib进行人脸检测与人脸关键点标记

Dlib简介:

首先给大家介绍一下Dlib

Dlib是一个跨平台的C++公共库,除了线程支持,网络支持,提供测试以及大量工具等等优点,Dlib还是一个强大的机器学习的C++库,包含了许多机器学习常用的算法。同时支持大量的数值算法如矩阵、大整数、随机数运算等等。

Dlib同时还包含了大量的图形模型算法。

最重要的是Dlib的文档和例子都非常详细。

Dlib主页:

这篇博客所述的人脸标记的算法也是来自Dlib库,Dlib实现了One Millisecond Face Alignment with an Ensemble of Regression Trees中的氏旅算法

这篇论文非常出名,在谷歌上打上One Millisecond就会自动补全,是CVPR 2014(国际计算机视觉与模式识别会议)上的一篇国际顶级水平的论文。毫秒级别就可以实现相当准确的人脸标记,包括一些半侧脸,脸很不清楚的情况,论文本身的算法十分复杂,感兴趣的同学可以下载看看。

Dlib实现了扒核悉这篇最新论文的算法,所以Dlib的人脸标记算法是十分先进的,而且Dlib自带的人脸检测库也很准确,我们项目受到硬件所限,摄像头拍摄到的画面比较模糊,而在这种情况下之前尝试了几个人脸库,识别率都非常的低,而Dlib的效果简直出乎意料。

相对于C++我还是比较喜欢使用python,同时Dlib也是支持python的,只是在配置的时候碰了不少钉子,网上大部分的Dlib资料都是针对于C++的,我好不容易才配置好了python的dlib,这里分享给大家:

Dlib for python 配置:

因为是用python去开发计算机视觉方面的东西,python的这些科学计算库是必不可少的,这里我把常用的科学计算库的安装也涵盖在内了,已经安装过这些库的同学就可以忽略了。

我的环境是Ubuntu14.04:

大家都知道Ubuntu是自带python2.7的,而且很多Ubuntu系统软件都是基于python2.7的,有一次我系统的python版本乱了,我脑残的想把python2.7卸载了重装,然后……好像是提醒我要卸载几千个软件来着,没看好直接回车了,等我反应过来Ctrl + C 的时候系统已经没了一半了…

所以我发现想要搞崩系统,这句话比rm -rf 还给力…

sudo apt-get remove python2.71

首先安装两个python第三方库的下载安装工具,ubuntu14.04好像是预装了easy_install

以下过程都是在终端中进行:

1.安装pip

sudo apt-get install python-pip1

2.安装easy-install

sudo apt-get install python-setuptools1

3.测试一下easy_install

有时候系统环境复杂了,安装的时候会安装到别的python版本上,这就麻烦了,所以还是谨慎一点测试一下,这里安装一个我之前在博客中提到的可以模拟浏览器的第三方python库测试一下。

sudo easy_install Mechanize1

4.测试安装是否成功

在终端输入python进入python shell

python1

进入python shell后import一下刚安装的mechanize

>>>import mechanize1

没有报错,就是安装成功了,如果说没有找到,那可能就是安装到别的python版本的路径了。

同时也测试一下PIL这个基础库

>>>import PIL1

没有报错的话,说明PIL已经被预装过了

5.安装numpy

接下来安装numpy

首先需要安装python-dev才可以编译之后的扩展库

sudo apt-get install python-dev1

之后就可以用easy-install 安装numpy了

sudo easy_install numpy1

这里有时候用easy-install 安装numpy下载的时候会卡住,那就只能用 apt-get 来安装了:

sudo apt-get install numpy1

不推荐这样安装的原因就是系统环境或者说python版本多了之后,直接apt-get安装numpy很有可能不知道装到哪个版春乎本去了,然后就很麻烦了,我有好几次遇到这个问题,不知道是运气问题还是什么,所以风险还是很大的,所以还是尽量用easy-install来安装。

同样import numpy 进行测试

python

>>>import numpy1234

没有报错的话就是成功了

下面的安装过程同理,我就从简写了,大家自己每步别忘了测试一下

6.安装scipy

sudo apt-get install python-scipy1

7.安装matplotlib

sudo apt-get install python-matplotlib1

8.安装dlib

我当时安装dlib的过程简直太艰辛,网上各种说不知道怎么配,配不好,我基本把stackoverflow上的方法试了个遍,才最终成功编译出来并且导入,不过听说18.18更新之后有了setup.py,那真是极好的,18.18我没有亲自配过也不能乱说,这里给大家分享我配置18.17的过程吧:

1.首先必须安装libboost,不然是不能使用.so库的

sudo apt-get install libboost-python-dev cmake1

2.到Dlib的官网上下载dlib,会下载下来一个压缩包,里面有C++版的dlib库以及例子文档,Python dlib库的代码例子等等

我使用的版本是dlib-18.17,大家也可以在我这里下载:

之后进入python_examples下使用bat文件进行编译,编译需要先安装libboost-python-dev和cmake

cd to dlib-18.17/python_examples

./compile_dlib_python_module.bat 123

之后会得到一个dlib.so,复制到dist-packages目录下即可使用

这里大家也可以直接用我编译好的.so库,但是也必须安装libboost才可以,不然python是不能调用so库的,下载地址:

将.so复制到dist-packages目录下

sudo cp dlib.so /usr/local/lib/python2.7/dist-packages/1

最新的dlib18.18好像就没有这个bat文件了,取而代之的是一个setup文件,那么安装起来应该就没有这么麻烦了,大家可以去直接安装18.18,也可以直接下载复制我的.so库,这两种方法应该都不麻烦~

有时候还会需要下面这两个库,建议大家一并安装一下

9.安装skimage

sudo apt-get install python-skimage1

10.安装imtools

sudo easy_install imtools1

Dlib face landmarks Demo

环境配置结束之后,我们首先看一下dlib提供的示例程序

1.人脸检测

dlib-18.17/python_examples/face_detector.py 源程序:

#!/usr/bin/python# The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt##   This example program shows how to find frontal human faces in an image.  In#   particular, it shows how you can take a list of images from the command#   line and display each on the screen with red boxes overlaid on each human#   face.##   The examples/faces folder contains some jpg images of people.  You can run#   this program on them and see the detections by executing the#   following command:#       ./face_detector.py ../examples/faces/*.jpg##   This face detector is made using the now classic Histogram of Oriented#   Gradients (HOG) feature combined with a linear classifier, an image#   pyramid, and sliding window detection scheme.  This type of object detector#   is fairly general and capable of detecting many types of semi-rigid objects#   in addition to human faces.  Therefore, if you are interested in making#   your own object detectors then read the train_object_detector.py example#   program.  ### COMPILING THE DLIB PYTHON INTERFACE#   Dlib comes with a compiled python interface for python 2.7 on MS Windows. If#   you are using another python version or operating system then you need to#   compile the dlib python interface before you can use this file.  To do this,#   run compile_dlib_python_module.bat.  This should work on any operating#   system so long as you have CMake and boost-python installed.#   On Ubuntu, this can be done easily by running the command:#       sudo apt-get install libboost-python-dev cmake##   Also note that this example requires scikit-image which can be installed#   via the command:#       pip install -U scikit-image#   Or downloaded from . import sys

import dlib

from skimage import io

detector = dlib.get_frontal_face_detector()

win = dlib.image_window()

print("a")for f in sys.argv[1:]:

print("a")

print("Processing file: {}".format(f))

img = io.imread(f)

# The 1 in the second argument indicates that we should upsample the image

# 1 time.  This will make everything bigger and allow us to detect more

# faces.

dets = detector(img, 1)

print("Number of faces detected: {}".format(len(dets)))    for i, d in enumerate(dets):

print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}".format(

i, d.left(), d.top(), d.right(), d.bottom()))

win.clear_overlay()

win.set_image(img)

win.add_overlay(dets)

dlib.hit_enter_to_continue()# Finally, if you really want to you can ask the detector to tell you the score# for each detection.  The score is bigger for more confident detections.# Also, the idx tells you which of the face sub-detectors matched.  This can be# used to broadly identify faces in different orientations.if (len(sys.argv[1:]) >0):

img = io.imread(sys.argv[1])

dets, scores, idx = detector.run(img, 1)    for i, d in enumerate(dets):

print("Detection {}, score: {}, face_type:{}".format(

d, scores[i], idx[i]))123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081

我把源代码精简了一下,加了一下注释: face_detector0.1.py

# -*- coding: utf-8 -*-import sys

import dlib

from skimage import io#使用dlib自带的frontal_face_detector作为我们的特征提取器detector = dlib.get_frontal_face_detector()#使用dlib提供的图片窗口win = dlib.image_window()#sys.argv[]是用来获取命令行参数的,sys.argv[0]表示代码本身文件路径,所以参数从1开始向后依次获取图片路径for f in sys.argv[1:]:    #输出目前处理的图片地址

print("Processing file: {}".format(f))    #使用skimage的io读取图片

img = io.imread(f)    #使用detector进行人脸检测 dets为返回的结果

dets = detector(img, 1)    #dets的元素个数即为脸的个数

print("Number of faces detected: {}".format(len(dets)))    #使用enumerate 函数遍历序列中的元素以及它们的下标

#下标i即为人脸序号

#left:人脸左边距离图片左边界的距离 ;right:人脸右边距离图片左边界的距离

#top:人脸上边距离图片上边界的距离 ;bottom:人脸下边距离图片上边界的距离

for i, d in enumerate(dets):

print("dets{}".format(d))

print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}"

.format( i, d.left(), d.top(), d.right(), d.bottom()))    #也可以获取比较全面的信息,如获取人脸与detector的匹配程度

dets, scores, idx = detector.run(img, 1)

for i, d in enumerate(dets):

print("Detection {}, dets{},score: {}, face_type:{}".format( i, d, scores[i], idx[i]))    

#绘制图片(dlib的ui库可以直接绘制dets)

win.set_image(img)

win.add_overlay(dets)    #等待点击

dlib.hit_enter_to_continue()1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950

分别测试了一个人脸的和多个人脸的,以下是运行结果:

运行的时候把图片文件路径加到后面就好了

python face_detector0.1.py ./data/3.jpg12

一张脸的:

两张脸的:

这里可以看出侧脸与detector的匹配度要比正脸小的很多

2.人脸关键点提取

人脸检测我们使用了dlib自带的人脸检测器(detector),关键点提取需要一个特征提取器(predictor),为了构建特征提取器,预训练模型必不可少。

除了自行进行训练外,还可以使用官方提供的一个模型。该模型可从dlib sourceforge库下载:

arks.dat.bz2

也可以从我的连接下载:

这个库支持68个关键点的提取,一般来说也够用了,如果需要更多的特征点就要自己去训练了。

dlib-18.17/python_examples/face_landmark_detection.py 源程序:

#!/usr/bin/python# The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt##   This example program shows how to find frontal human faces in an image and#   estimate their pose.  The pose takes the form of 68 landmarks.  These are#   points on the face such as the corners of the mouth, along the eyebrows, on#   the eyes, and so forth.##   This face detector is made using the classic Histogram of Oriented#   Gradients (HOG) feature combined with a linear

人形识别率计算公式是人脸辨识出的个游旁数除以人脸总个数。识别率指的是通过人脸识别技术识别正确数占识别总数的百分比。人脸识别算法分类基于人脸特征点的识别算法。神经网络识别基于光照估计模型理论提出了基于灰度矫正的光照预处理方法,并且在光照估计模型的基础上,进行相应的光照补偿和光照平衡策略。优化的形变统计校正理论基于统计形变的校正理论,优化人脸姿态强化迭代理论强化迭代理论是对DLFA人脸检测算法的有效扩展独创的实时特征识别理论该理论侧重神配橡于人脸实时数据的中间值处理卖帆,在识别速率和识别效能之间,达到最佳的匹配效果。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12526966.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-26
下一篇 2023-05-26

发表评论

登录后才能评论

评论列表(0条)

保存