谁能给一个fortran的遗传算法程序

谁能给一个fortran的遗传算法程序,第1张

module data_type

implicit none

integer(kind=4), parameter :: IB=4, RP=8

end module data_type

module data_Rosen

use data_type

implicit none

integer(kind=IB), parameter :: Dim_XC=10

end module data_Rosen

module data_HDE

use data_type

use data_Rosen

implicit none

integer(kind=IB), parameter :: NP=20, itermax=20000, strategy=6, &

refresh=500, iwrite=7

integer(kind=IB), dimension(3), parameter :: method=(/0, 1, 0/)

real(kind=RP), parameter :: VTR=-1.0e-4_RP, CR_XC=0.5_RP

real(kind=RP) :: F_XC=0.8_RP, F_CR=0.8_RP

real(kind=RP), dimension(Dim_XC), parameter :: XCmin=-10.0_RP, XCmax=10.0_RP

real(kind=RP), dimension(Dim_XC) :: bestmem_XC

integer(kind=IB) :: nfeval

real(kind=RP) :: bestval

end module data_HDE

program Rosen

use data_type

use data_Rosen

use data_HDE

implicit none

integer(kind=IB) :: i

integer (kind=IB), dimension(8) :: time

intrinsic date_and_time

external FTN

open(iwrite,file='Rosen.txt')

call date_and_time(values=time)

write(unit=iwrite, FMT=11) time(1:3), time(5:7)

call DE_Fortran90(FTN, Dim_XC, XCmin, XCmax, VTR, NP, itermax, F_XC,&握毁

CR_XC, strategy, refresh, iwrite, bestmem_XC, &

bestval, nfeval, F_CR, method)

write(iwrite,205) NP, nfeval, method(1:3)

write(iwrite,FMT=201) F_XC, CR_XC, F_CR

write(iwrite,FMT=200) bestval

do i=1,Dim_XC

write(iwrite,FMT=202) i,bestmem_XC(i)

end do

200 format(/2x, 'Bestval=', ES14.7)

201 format(2x, 'F_XC =',F6.3, 2x, 'CR_XC =', F6.3, 2x, '尘桥F_CR =', F6.3)

202 format(2x, 'best_XC(',I3,') =',ES14.7)

205 format(2x, 'NP=', I4, 4x, 'No. function call =', I9, &

/2x, 'mehtod(1:3) =',3I3)

call date_and_time(values=time)

write(unit=iwrite, FMT=10)time(1:3), time(5:7)

10 format(/1x, 'End of Program. Date:', I4, '/', I2,'/', I2, '段兄备, Time: ', I2,':',I2,':',I2)

11 format(1x, 'Beginning of Program. Date:', I4, '/', I2,'/', I2, ', Time: ', I2,':',I2,':',I2)

end program Rosen

subroutine FTN(X, objval)

use data_type

use data_Rosen

implicit none

real(kind=RP), dimension(Dim_XC), intent(in) :: X

real(kind=RP), intent(out) :: objval

integer(kind=IB) :: i

i=Dim_XC

objval=sum(100.0*(x(1:i-1)**2-x(2:i))**2+(1.0-x(1:i-1))**2)

end subroutine FTN

subroutine DE_Fortran90(obj, Dim_XC, XCmin, XCmax, VTR, NP, itermax, F_XC, &

CR_XC, strategy, refresh, iwrite, bestmem_XC, bestval, nfeval, &

F_CR, method)

!.......................................................................

!

! Differential Evolution for Optimal Control Problems

!

!.......................................................................

! This Fortran 90 program translates from the original MATLAB

! version of differential evolution (DE). This FORTRAN 90 code

! has been tested on Compaq Visual Fortran v6.1.

! Any users new to the DE are encouraged to read the article of Storn and Price.

!

! Refences:

! Storn, R., and Price, K.V., (1996). Minimizing the real function of the

! ICEC'96 contest by differential evolution. IEEE conf. on Evolutionary

! Comutation, 842-844.

!

! This Fortran 90 program written by Dr. Feng-Sheng Wang

! Department of Chemical Engineering, National Chung Cheng University,

! Chia-Yi 621, Taiwan, e-mail: chmfsw@ccunix.ccu.edu.tw

!.........................................................................

! obj : The user provided file for evlauting the objective function.

! subroutine obj(xc,fitness)

! where "xc" is the real decision parameter vector.(input)

! "fitness" is the fitness value.(output)

! Dim_XC : Dimension of the real decision parameters.

! XCmin(Dim_XC) : The lower bound of the real decision parameters.

! XCmax(Dim_XC) : The upper bound of the real decision parameters.

! VTR : The expected fitness value to reach.

! NP : Population size.

! itermax : The maximum number of iteration.

! F_XC : Mutation scaling factor for real decision parameters.

! CR_XC : Crossover factor for real decision parameters.

! strategy : The strategy of the mutation operations is used in HDE.

! refresh : The intermediate output will be produced after "refresh"

! iterations. No intermediate output will be produced if

! "refresh <1".

! iwrite : The unit specfier for writing to an external data file.

! bestmen_XC(Dim_XC) : The best real decision parameters.

! bestval : The best objective function.

! nfeval : The number of function call.

! method(1) = 0, Fixed mutation scaling factors (F_XC)

! = 1, Random mutation scaling factors F_XC=[0, 1]

! = 2, Random mutation scaling factors F_XC=[-1, 1]

! method(2) = 1, Random combined factor (F_CR) used for strategy = 6

! in the mutation operation

! = other, fixed combined factor provided by the user

! method(3) = 1, Saving results in a data file.

! = other, displaying results only.

use data_type, only : IB, RP

implicit none

integer(kind=IB), intent(in) :: NP, Dim_XC, itermax, strategy, &

iwrite, refresh

real(kind=RP), intent(in) :: VTR, CR_XC

real(kind=RP) :: F_XC, F_CR

real(kind=RP), dimension(Dim_XC), intent(in) :: XCmin, XCmax

real(kind=RP), dimension(Dim_XC), intent(inout) :: bestmem_XC

real(kind=RP), intent(out) :: bestval

integer(kind=IB), intent(out) :: nfeval

real(kind=RP), dimension(NP,Dim_XC) :: pop_XC, bm_XC, mui_XC, mpo_XC, &

popold_XC, rand_XC, ui_XC

integer(kind=IB) :: i, ibest, iter

integer(kind=IB), dimension(NP) :: rot, a1, a2, a3, a4, a5, rt

integer(kind=IB), dimension(4) :: ind

real(kind=RP) :: tempval

real(kind=RP), dimension(NP) :: val

real(kind=RP), dimension(Dim_XC) :: bestmemit_XC

real(kind=RP), dimension(Dim_XC) :: rand_C1

integer(kind=IB), dimension(3), intent(in) :: method

external obj

intrinsic max, min, random_number, mod, abs, any, all, maxloc

interface

function randperm(num)

use data_type, only : IB

implicit none

integer(kind=IB), intent(in) :: num

integer(kind=IB), dimension(num) :: randperm

end function randperm

end interface

!!-----Initialize a population --------------------------------------------!!

pop_XC=0.0_RP

do i=1,NP

call random_number(rand_C1)

pop_XC(i,:)=XCmin+rand_C1*(XCmax-XCmin)

end do

!!--------------------------------------------------------------------------!!

!!------Evaluate fitness functions and find the best member-----------------!!

val=0.0_RP

nfeval=0

ibest=1

call obj(pop_XC(1,:), val(1))

bestval=val(1)

nfeval=nfeval+1

do i=2,NP

call obj(pop_XC(i,:), val(i))

nfeval=nfeval+1

if (val(i) <bestval) then

ibest=i

bestval=val(i)

end if

end do

bestmemit_XC=pop_XC(ibest,:)

bestmem_XC=bestmemit_XC

!!--------------------------------------------------------------------------!!

bm_XC=0.0_RP

rot=(/(i,i=0,NP-1)/)

iter=1

!!------Perform evolutionary computation------------------------------------!!

do while (iter <= itermax)

popold_XC=pop_XC

!!------Mutation operation--------------------------------------------------!!

ind=randperm(4)

a1=randperm(NP)

rt=mod(rot+ind(1),NP)

a2=a1(rt+1)

rt=mod(rot+ind(2),NP)

a3=a2(rt+1)

rt=mod(rot+ind(3),NP)

a4=a3(rt+1)

rt=mod(rot+ind(4),NP)

a5=a4(rt+1)

bm_XC=spread(bestmemit_XC, DIM=1, NCOPIES=NP)

!----- Generating a random sacling factor--------------------------------!

select case (method(1))

case (1)

call random_number(F_XC)

case(2)

call random_number(F_XC)

F_XC=2.0_RP*F_XC-1.0_RP

end select

!---- select a mutation strategy-----------------------------------------!

select case (strategy)

case (1)

ui_XC=bm_XC+F_XC*(popold_XC(a1,:)-popold_XC(a2,:))

case default

ui_XC=popold_XC(a3,:)+F_XC*(popold_XC(a1,:)-popold_XC(a2,:))

case (3)

ui_XC=popold_XC+F_XC*(bm_XC-popold_XC+popold_XC(a1,:)-popold_XC(a2,:))

case (4)

ui_XC=bm_XC+F_XC*(popold_XC(a1,:)-popold_XC(a2,:)+popold_XC(a3,:)-popold_XC(a4,:))

case (5)

ui_XC=popold_XC(a5,:)+F_XC*(popold_XC(a1,:)-popold_XC(a2,:)+popold_XC(a3,:) &

-popold_XC(a4,:))

case (6) ! A linear crossover combination of bm_XC and popold_XC

if (method(2) == 1) call random_number(F_CR)

ui_XC=popold_XC+F_CR*(bm_XC-popold_XC)+F_XC*(popold_XC(a1,:)-popold_XC(a2,:))

end select

!!--------------------------------------------------------------------------!!

!!------Crossover operation-------------------------------------------------!!

call random_number(rand_XC)

mui_XC=0.0_RP

mpo_XC=0.0_RP

where (rand_XC <CR_XC)

mui_XC=1.0_RP

! mpo_XC=0.0_RP

elsewhere

! mui_XC=0.0_RP

mpo_XC=1.0_RP

end where

ui_XC=popold_XC*mpo_XC+ui_XC*mui_XC

!!--------------------------------------------------------------------------!!

!!------Evaluate fitness functions and find the best member-----------------!!

do i=1,NP

!!------Confine each of feasible individuals in the lower-upper bound-------!!

ui_XC(i,:)=max(min(ui_XC(i,:),XCmax),XCmin)

call obj(ui_XC(i,:), tempval)

nfeval=nfeval+1

if (tempval <val(i)) then

pop_XC(i,:)=ui_XC(i,:)

val(i)=tempval

if (tempval <bestval) then

bestval=tempval

bestmem_XC=ui_XC(i,:)

end if

end if

end do

bestmemit_XC=bestmem_XC

if( (refresh >0) .and. (mod(iter,refresh)==0)) then

if (method(3)==1) write(unit=iwrite,FMT=203) iter

write(unit=*, FMT=203) iter

do i=1,Dim_XC

if (method(3)==1) write(unit=iwrite, FMT=202) i, bestmem_XC(i)

write(*,FMT=202) i,bestmem_XC(i)

end do

if (method(3)==1) write(unit=iwrite, FMT=201) bestval

write(unit=*, FMT=201) bestval

end if

iter=iter+1

if ( bestval <= VTR .and. refresh >0) then

write(unit=iwrite, FMT=*) ' The best fitness is smaller than VTR'

write(unit=*, FMT=*) 'The best fitness is smaller than VTR'

exit

endif

end do

!!------end the evolutionary computation------------------------------!!

201 format(2x, 'bestval =', ES14.7, /)

202 format(5x, 'bestmem_XC(', I3, ') =', ES12.5)

203 format(2x, 'No. of iteration =', I8)

end subroutine DE_Fortran90

function randperm(num)

use data_type, only : IB, RP

implicit none

integer(kind=IB), intent(in) :: num

integer(kind=IB) :: number, i, j, k

integer(kind=IB), dimension(num) :: randperm

real(kind=RP), dimension(num) :: rand2

intrinsic random_number

call random_number(rand2)

do i=1,num

number=1

do j=1,num

if (rand2(i) >rand2(j)) then

number=number+1

end if

end do

do k=1,i-1

if (rand2(i) <= rand2(k) .and. rand2(i) >= rand2(k)) then

number=number+1

end if

end do

randperm(i)=number

end do

return

发现的几处错误:

1、适应度函数里面if a[i]=4改为if a(i)==4,类似的还有if b[i]=4。不需要多解释了吧?一个是数组注意和C语言风格区别,另一个是判断相等的符号问题。

2、适应度函数应返回列向量,在fit函数最后加一句:fitness=fitness(:)

3、选择的结果是种群规模减小,不能使用固定的出示规模20,应把适应度函数里面两处循环for i=1:20改为for i=1:size(x,1)

4、主函数里面rein应为衡弊reins。

代码写到一个M文件中:

function zd

%% 初始化遗传算法参数

%初始化参数

NIND=20

MAXGEN=100

NVAR=8

PRECI=1

GGAP=0.9% 进化代数,即迭代次数

% 种群规模

%% 初始化种群计算适应度值

% 初始化种群

FieldD=[rep(PRECI,[1,NVAR])rep([01],[1,NVAR])rep([1011],[1,NVAR])]

Chrom=crtbp(NIND,NVAR*PRECI)

ObjV=fit(bs2rv(Chrom,FieldD))

gen=0

while gen<MAXGEN

    FitnV=ranking(ObjV)

    SelCh=select('sus',Chrom,FitnV,GGAP)

    SelCh=recombin('xovsp',SelCh,0.7)

    SelCh=mut(SelCh,0.07)

    ObjVSel=fit(bs2rv(SelCh,FieldD))

    [Chrom ObjV]=reins(Chrom,SelCh,1,1,ObjV,ObjVSel)

    gen=gen+1

    

    %找最好的染色体

    trace(gen,1)=min(ObjV)

    trace(gen,2)=sum(ObjV)/length(ObjV)

end

plot(trace(:,1)) hold on

plot(trace(:,2)) grid

legend('average'蠢碰,'bestfitness')

function [fitness]=fit(x)

for 咐档族i=1:size(x,1)

    i

    %随机产生一个种群

    if (x(i,6)*x(i,7)-x(i,8)*x(i,6))*(x(i,3)*x(i,2)-x(i,4)*x(i,1))==0

        x(i,:)=unidrnd(2,1,8)-1

    end%染色体的适应度

end

a=x(:,1)+x(:,2)+x(:,3)+x(:,4)

b=x(:,5)+x(:,6)+x(:,7)+x(:,8)

for i=1:size(x,1)

    i

    if a(i)==4

        c=1

    else

        c=0

    end

    if b(i)==4

        d=1

    else

        d=0

    end

    fitness(i)=c+d

end

fitness=fitness(:)

这个问题也困扰了我好久,终于解决了。给你个ga.m程序,新建m文件复制进去,再运行程序试试。

%ga.m

function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop,opts,...

termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps)

% GA run a genetic algorithm

% function [x,endPop,bPop,traceInfo]=ga(bounds,evalFN,evalOps,startPop,opts,

% termFN,termOps,selectFN,selectOps,

% xOverFNs,xOverOps,mutFNs,mutOps)

%

% Output Arguments:

% x- the best solution found during the course of the run

% endPop - the final population

% bPop - a trace of the best population

% traceInfo- a matrix of best and means of the ga for each generation

%

% Input Arguments:

% bounds - a matrix of upper and lower bounds on the variables

% evalFN - the name of the evaluation .m function

% evalOps - options to pass to the evaluation function ([NULL])

% startPop - a matrix of solutions that can be initialized

% from initialize.m

% opts - [epsilon prob_ops display] change required to consider two

% solutions different, prob_ops 0 if you want to apply the

% genetic operators probabilisticly to each solution, 1 if

% you are supplying a deterministic number of operator

% applications and display is 1 to output progress 0 for

% quiet. ([1e-6 1 0])

% termFN - name of the .m termination function (['maxGenTerm'])

% termOps - options string to be passed to the termination function

% ([100]).

% selectFN - name of the .m selection function (['normGeomSelect'])

% selectOpts - options string to be passed to select after

% select(pop,#,opts) ([0.08])

% xOverFNS - a string containing blank seperated names of Xover.m

% files (['arithXover heuristicXover simpleXover'])

% xOverOps - A matrix of options to pass to Xover.m files with the

% first column being the number of that xOver to perform

% similiarly for mutation ([2 02 32 0])

% mutFNs - a string containing blank seperated names of mutation.m

% files (['boundaryMutation multiNonUnifMutation ...

% nonUnifMutation unifMutation'])

% mutOps - A matrix of options to pass to Xover.m files with the

% first column being the number of that xOver to perform

% similiarly for mutation ([4 0 06 100 34 100 34 0 0])

% Binary and Real-Valued Simulation Evolution for Matlab

% Copyright (C) 1996 C.R. Houck, J.A. Joines, M.G. Kay

%

% C.R. Houck, J.Joines, and M.Kay. A genetic algorithm for function

% optimization: A Matlab implementation. ACM Transactions on Mathmatical

% Software, Submitted 1996.

%

% This program is free softwareyou can redistribute it and/or modify

% it under the terms of the GNU General Public License as published by

% the Free Software Foundationeither version 1, or (at your option)

% any later version.

%

% This program is distributed in the hope that it will be useful,

% but WITHOUT ANY WARRANTYwithout even the implied warranty of

% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

% GNU General Public License for more details. A copy of the GNU

% General Public License can be obtained from the

% Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

%%$Log: ga.m,v $

%Revision 1.10 1996/02/02 15:03:00 jjoine

% Fixed the ordering of imput arguments in the comments to match

% the actual order in the ga function.

%

%Revision 1.9 1995/08/28 20:01:07 chouck

% Updated initialization parameters, updated mutation parameters to reflect

% b being the third option to the nonuniform mutations

%

%Revision 1.8 1995/08/10 12:59:49 jjoine

%Started Logfile to keep track of revisions

%

n=nargin

if n<2 | n==6 | n==10 | n==12

disp('Insufficient arguements')

end

if n<3 %Default evalation opts.

evalOps=[]

end

if n<5

opts = [1e-6 1 0]

end

if isempty(opts)

opts = [1e-6 1 0]

end

if any(evalFN<48) %Not using a .m file

if opts(2)==1 %Float ga

e1str=['x=c1c1(xZomeLength)=', evalFN '']

e2str=['x=c2c2(xZomeLength)=', evalFN '']

else %Binary ga

e1str=['x=b2f(endPop(j,:),bounds,bits)endPop(j,xZomeLength)=',...

evalFN '']

end

else %Are using a .m file

if opts(2)==1 %Float ga

e1str=['[c1 c1(xZomeLength)]=' evalFN '(c1,[gen evalOps])']

e2str=['[c2 c2(xZomeLength)]=' evalFN '(c2,[gen evalOps])']

else %Binary ga

e1str=['x=b2f(endPop(j,:),bounds,bits)[x v]=' evalFN ...

'(x,[gen evalOps])endPop(j,:)=[f2b(x,bounds,bits) v]']

end

end

if n<6 %Default termination information

termOps=[100]

termFN='maxGenTerm'

end

if n<12 %Default muatation information

if opts(2)==1 %Float GA

mutFNs=['boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation']

mutOps=[4 0 06 termOps(1) 34 termOps(1) 34 0 0]

else %Binary GA

mutFNs=['binaryMutation']

mutOps=[0.05]

end

end

if n<10 %Default crossover information

if opts(2)==1 %Float GA

xOverFNs=['arithXover heuristicXover simpleXover']

xOverOps=[2 02 32 0]

else %Binary GA

xOverFNs=['simpleXover']

xOverOps=[0.6]

end

end

if n<9 %Default select opts only i.e. roullete wheel.

selectOps=[]

end

if n<8 %Default select info

selectFN=['normGeomSelect']

selectOps=[0.08]

end

if n<6 %Default termination information

termOps=[100]

termFN='maxGenTerm'

end

if n<4 %No starting population passed given

startPop=[]

end

if isempty(startPop) %Generate a population at random

%startPop=zeros(80,size(bounds,1)+1)

startPop=initializega(80,bounds,evalFN,evalOps,opts(1:2))

end

if opts(2)==0 %binary

bits=calcbits(bounds,opts(1))

end

xOverFNs=parse(xOverFNs)

mutFNs=parse(mutFNs)

xZomeLength = size(startPop,2) %Length of the xzome=numVars+fittness

numVar = xZomeLength-1 %Number of variables

popSize = size(startPop,1) %Number of individuals in the pop

endPop = zeros(popSize,xZomeLength)%A secondary population matrix

c1 = zeros(1,xZomeLength) %An individual

c2 = zeros(1,xZomeLength) %An individual

numXOvers= size(xOverFNs,1) %Number of Crossover operators

numMuts = size(mutFNs,1) %Number of Mutation operators

epsilon = opts(1)%Threshold for two fittness to differ

oval = max(startPop(:,xZomeLength))%Best value in start pop

bFoundIn = 1 %Number of times best has changed

done = 0 %Done with simulated evolution

gen = 1 %Current Generation Number

collectTrace = (nargout>3) %Should we collect info every gen

floatGA = opts(2)==1 %Probabilistic application of ops

display = opts(3)%Display progress

while(~done)

%Elitist Model

[bval,bindx] = max(startPop(:,xZomeLength))%Best of current pop

best = startPop(bindx,:)

if collectTrace

traceInfo(gen,1)=gen %current generation

traceInfo(gen,2)=startPop(bindx,xZomeLength) %Best fittness

traceInfo(gen,3)=mean(startPop(:,xZomeLength))%Avg fittness

traceInfo(gen,4)=std(startPop(:,xZomeLength))

end

if ( (abs(bval - oval)>epsilon) | (gen==1)) %If we have a new best sol

if display

fprintf(1,'\n%d %f\n',gen,bval) %Update the display

end

if floatGA

bPop(bFoundIn,:)=[gen startPop(bindx,:)]%Update bPop Matrix

else

bPop(bFoundIn,:)=[gen b2f(startPop(bindx,1:numVar),bounds,bits)...

startPop(bindx,xZomeLength)]

end

bFoundIn=bFoundIn+1 %Update number of changes

oval=bval %Update the best val

else

if display

fprintf(1,'%d ',gen) %Otherwise just update num gen

end

end

endPop = feval(selectFN,startPop,[gen selectOps])%Select

if floatGA %Running with the model where the parameters are numbers of ops

for i=1:numXOvers,

for j=1:xOverOps(i,1),

a = round(rand*(popSize-1)+1) %Pick a parent

b = round(rand*(popSize-1)+1) %Pick another parent

xN=deblank(xOverFNs(i,:)) %Get the name of crossover function

[c1 c2] = feval(xN,endPop(a,:),endPop(b,:),bounds,[gen xOverOps(i,:)])

if c1(1:numVar)==endPop(a,(1:numVar)) %Make sure we created a new

c1(xZomeLength)=endPop(a,xZomeLength)%solution before evaluating

elseif c1(1:numVar)==endPop(b,(1:numVar))

c1(xZomeLength)=endPop(b,xZomeLength)

else

%[c1(xZomeLength) c1] = feval(evalFN,c1,[gen evalOps])

eval(e1str)

end

if c2(1:numVar)==endPop(a,(1:numVar))

c2(xZomeLength)=endPop(a,xZomeLength)

elseif c2(1:numVar)==endPop(b,(1:numVar))

c2(xZomeLength)=endPop(b,xZomeLength)

else

%[c2(xZomeLength) c2] = feval(evalFN,c2,[gen evalOps])

eval(e2str)

end

endPop(a,:)=c1

endPop(b,:)=c2

end

end

for i=1:numMuts,

for j=1:mutOps(i,1),

a = round(rand*(popSize-1)+1)

c1 = feval(deblank(mutFNs(i,:)),endPop(a,:),bounds,[gen mutOps(i,:)])

if c1(1:numVar)==endPop(a,(1:numVar))

c1(xZomeLength)=endPop(a,xZomeLength)

else

%[c1(xZomeLength) c1] = feval(evalFN,c1,[gen evalOps])

eval(e1str)

end

endPop(a,:)=c1

end

end

else %We are running a probabilistic model of genetic operators

for i=1:numXOvers,

xN=deblank(xOverFNs(i,:)) %Get the name of crossover function

cp=find(rand(popSize,1)<xOverOps(i,1)==1)

if rem(size(cp,1),2) cp=cp(1:(size(cp,1)-1))end

cp=reshape(cp,size(cp,1)/2,2)

for j=1:size(cp,1)

a=cp(j,1)b=cp(j,2)

[endPop(a,:) endPop(b,:)] = feval(xN,endPop(a,:),endPop(b,:),...

bounds,[gen xOverOps(i,:)])

end

end

for i=1:numMuts

mN=deblank(mutFNs(i,:))

for j=1:popSize

endPop(j,:) = feval(mN,endPop(j,:),bounds,[gen mutOps(i,:)])

eval(e1str)

end

end

end

gen=gen+1

done=feval(termFN,[gen termOps],bPop,endPop)%See if the ga is done

startPop=endPop %Swap the populations

[bval,bindx] = min(startPop(:,xZomeLength))%Keep the best solution

startPop(bindx,:) = best %replace it with the worst

end

[bval,bindx] = max(startPop(:,xZomeLength))

if display

fprintf(1,'\n%d %f\n',gen,bval)

end

x=startPop(bindx,:)

if opts(2)==0 %binary

x=b2f(x,bounds,bits)

bPop(bFoundIn,:)=[gen b2f(startPop(bindx,1:numVar),bounds,bits)...

startPop(bindx,xZomeLength)]

else

bPop(bFoundIn,:)=[gen startPop(bindx,:)]

end

if collectTrace

traceInfo(gen,1)=gen %current generation

traceInfo(gen,2)=startPop(bindx,xZomeLength)%Best fittness

traceInfo(gen,3)=mean(startPop(:,xZomeLength))%Avg fittness

end


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12533995.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-26
下一篇 2023-05-26

发表评论

登录后才能评论

评论列表(0条)

保存