%用randon可获得不同角度的一维投影;
clear all
P = phantom('Modified Shepp-Logan',256)
R=radon(P)
figureimshow(R,[])
figure
imshow(P,[])title('仿体图')
%直接反投影法
l = pow2(nextpow2(size(R,1))-1)%重构图像的大小
P_1 = zeros(l,l)%用于存放重构后的图像
for i=1 : size(R,2)
tmp = imrotate( repmat(R(:,i),1,size(R,1)),i-1,'bilinear' )
tmp = tmp(floor(size(tmp,1)/2-l/2)+1:floor(size(tmp,1)/2+l/2),floor(size(tmp,2)/2-l/2)+1:floor(size(tmp,2)/2+l/2))
P_1=P_1+tmp
end
P_1=P_1/size(R,2)
P_1=rot90(P_1)
figureimshow(P_1,[])title('直接反投影法')
%滤波反投影法
N=180
%滤波
H=size(R,1)
h=zeros((H*2-1),1)
for i=0:H-1
if i==0
h(H-i)=1/4
elseif rem(i,2)==0
h(H-i)=0
姿御 h(H+i)=0
else
h(H-i)=-1/(i*pi)^2
h(H+i)=-1/(i*pi)^2
迹昌岩 end
end
x=zeros(H,N)
for i=1:N
s=R(:,i)
xx=conv(s',h')
x(:,i)=xx(H:2*H-1)
end
%反投影
P_3=zeros(l,l)
for i=1:l
for j=1:l
for k=1:180
theta=k/180*pi
t=(j-l/2-0.5)*cos(theta)+(l/2+0.5-i)*sin(theta)+(H+1)/2
t1=floor(t)
t2=floor(t+1)
P_3(i,j)=P_3(i,j)+(t2-t)*x(t1,k)+(t-t1)*x(t2,k)
end
end
end
P_3=pi/N*P_3
figureimshow(P_3,[])title('滤波反投迅扮影法')
把采集到的图象用仿射变换配准,为了加快运行速度可以先敏山猜进行展开。
配准这一步可以在空间域,
也可在频率域进行
然后按配准结果将这些图象插合成一幅图象,
再用最小二乘法求解线性方程组即可。
注意,
最好使用超松弛迭代法求解,
但是遇到0的时候结果可能有较大唯亏出入,
解决办法中的一种是图象矩阵所有元素全部加上1,
计算完成后再全部减去1,
然后再512级灰度量化
这是最简单的重构方法,
没有考虑图象的模糊效应。
此外,如果有矩阵维度问题,
有两种解决办法,
一是将插合图象变成正方形图象,
一是将各插合行,列按权值累加,
反向桥型映射,
后一种速度快些,
也不必直接求解方程,
但是不具有通用性。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)