打开百度App,看更多
2、木工画椭圆在需要画椭圆的最长直径(焦点)的两端各钉好钉子,找一根绵线,绵线长度需长过最长直径的距离。绵线两端各系紧在钉子上(用双线最好),用铅笔靠紧绵线并移动铅笔,一个漂亮的椭圆就出来了。椭圆的面积大小由绵线长短调节。把长轴和短轴十字交叉先画好,再用圆规取长轴。
3、用一把卷尺和线一根,用食指和拇指按住线的二头房子卷尺的刻度尺上,剩下中间那一段就没有头和尾了。用笔在线的内则抵住线用向外的力划线。画一圈后椭圆形就出来了。
4用一根线和铅笔,2个图钉或大头针画椭圆:用图钉或者大头针定好两个点(两点的距离L为长直径a平方减短直径b平方的开方,即L=√a2-b2),栓好线固定住(线的净长度为长直径即a),用笔带住线,直接画出椭圆。
椭圆形的画法如下:
材料准备:白纸、笔、尺子
1、首先画4条线,构成一个长方形。
2、再在长方形的中心画上一个“十字”的中心辅助线。
3、然后根据中心辅助线与长方形的4个交点画出椭圆的形状。
4、最后用橡皮擦擦掉多余的部分,这样一个椭圆就画好了。
椭圆(Ellipse)是平面内到定点F1、F2的距离之和等于常数(大于|F1F2|)的动点P的轨迹,F1、F2称为椭圆的两个焦点。其数学表达式为:|PF1|+|PF2|=2a(2a>|F1F2|)。
简介:
在数学中,椭圆是围绕两个焦点的平面中的曲线,使得对于曲线上的每个点,到两个焦点的距离之和是恒定的。因此,它是圆的概括,其是具有两个焦点在相同位置处的特殊类型的椭圆。椭圆的形状(如何“伸长”)由其偏心度表示,对于椭圆可以是从0(圆的极限情况)到任意接近但小于1的任何数字。
椭圆是封闭式圆锥截面:由锥体与平面相交的平面曲线。椭圆与其他两种形式的圆锥截面有很多相似之处:抛物线和双曲线,两者都是开放的和无界的。圆柱体的横截面为椭圆形,除非该截面垂直于圆柱体轴线。
椭圆也可以被定义为一组点,使得曲线上的每个点的距离与给定点(称为焦点)的距离与曲线上的相同点的距离的比值给定行(称为directrix)是一个常数。该比率称为椭圆的偏心率。
画椭圆形的简单方法如下:
1、基本画法
适合工程现场 *** 作的简单画法如图1所示,用一条固定长度的绳,最好是d性小的金属绳,如细钢丝绳,两端固定在钉子上,用划线笔撑直绳子,笔与绳之间是滑动的,这样转圈画出的就是一个椭圆。
这一画法简单、方便,很适合工程现场的 *** 作。但需要确定两个固定钉子的距离和绳的长度。下面再继续介绍根据椭圆长宽尺寸求出这两个参数的方法。
2、获取这两个参数的方法之一——计算法
对于有一定计算能力的人来说,可采用计算的方法,最方便。设定要画的椭圆长度为2a,宽度为2b,两钉的距离为2c,绳长为L。
则: c=√(a×a-b×b)
即,c等于a的平方减去b的平方之差的平方根。
L=2×a,即,L等于椭圆的长度。
3、获取这两个参数的方法之二——作图法
画法步骤如下:
第一步,按椭圆的长和宽,画出十字线,要注意垂直;
第二步,在十字线宽的方向线上,量出距中心长度等于b的位置点;
第三步,以此点为圆心,以a长为半径,划一圆弧,与十字线长的方向线上,相交在两点;
第四步,这两点距离就等于2c,这两点也就是两钉子的固定位置。
绳长等于2a。即椭圆长度。
扩展资料:
一、椭圆简介
椭圆(Ellipse)是平面内到定点F1、F2的距离之和等于常数(大于|F1F2|)的动点P的轨迹,F1、F2称为椭圆的两个焦点。其数学表达式为:|PF1|+|PF2|=2a(2a>|F1F2|)。
椭圆是圆锥曲线的一种,即圆锥与平面的截线。椭圆的周长等于特定的正弦曲线在一个周期内的长度。
在数学中,椭圆是围绕两个焦点的平面中的曲线,使得对于曲线上的每个点,到两个焦点的距离之和是恒定的。因此,它是圆的概括,其是具有两个焦点在相同位置处的特殊类型的椭圆。椭圆的形状(如何“伸长”)由其偏心度表示,对于椭圆可以是从0(圆的极限情况)到任意接近但小于1的任何数字。
椭圆是封闭式圆锥截面:由锥体与平面相交的平面曲线。椭圆与其他两种形式的圆锥截面有很多相似之处:抛物面和双曲线,两者都是开放的和无界的。圆柱体的横截面为椭圆形,除非该截面平行于圆柱体的轴线。
椭圆也可以被定义为一组点,使得曲线上的每个点的距离与给定点(称为焦点或焦点)的距离与曲线上的相同点的距离的比值给定行(称为directrix)是一个常数。该比率称为椭圆的偏心率。
也可以这样定义椭圆,椭圆是点的集合,点其到两个焦点的距离的和是固定数。椭圆在物理,天文和工程方面很常见。
二、椭圆的定义
平面内与两定点 、 的距离的和等于常数 ( )的动点P的轨迹叫做椭圆。即: ,其中两定点 、 叫做椭圆的焦点,两焦点的距离
叫做椭圆的焦距。 为椭圆的动点。椭圆截与两焦点连线重合的直线所得的弦为长轴,长为 。椭圆截垂直平分两焦点连线的直线所得弦为短轴,长为 。 可变为
三、光学性质
椭圆的面镜(以椭圆的长轴为轴,把椭圆转动180度形成的立体图形,其内表面全部做成反射面,中空)可以将某个焦点发出的光线全部反射到另一个焦点处;椭圆的透镜(某些截面为椭圆)有汇聚光线的作用(也叫凸透镜),老花眼镜、放大镜和远视眼镜都是这种镜片(这些光学性质可以通过反证法证明)。
参考资料:
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)