实际上机床厂也可以制作相同的报警帮助文本,以便于帮助机床使用者/维护人员及时查找故障。
制作帮助文本的过程:
1 编写报警文本并修改MBDDEINI,使报警可正常显示。
2 在WORD中编写报警帮助文本
3 将步骤2的文本转换成PDF文件(前提已经安装了Acrobat),文件名为alarm_ukpdf
4 编写索引文件,文件名alarm_uktxt
5 拷贝alarm_ukpdf和alarm_uktxt文件拷贝到F:\user\hlp 目录下。
注意:在f:\mmc2\hlp目录下也有alarm_ukpdf和alarm_uktxt文件,不要覆盖!要从s7300中读取梯形图,可以按照以下步骤:
1
首先,电脑上得安装西门子的博途开发平台
2
然后,要买一条西门子专用的编程电缆,并设置好串口波特率等参数
3
把plc和电脑用电缆进行连接,上电
4
在开发平台上新建对应plc型号的工程,然后在线模式下,点击读取plc程序,就可以了
5
如果plc设置读保护,那就无法读取>1 位逻辑指令
11 位逻辑指令概述
12 -||- 常开接点(地址)
13 -|/|-常闭接点(地址)
14 XOR位异或
15 -|NOT|- 信号流反向
16 -( ) 输出线圈
17 -(#)- 中间输出
18 -(R) 线圈复位
19 -(S) 线圈置位
110 RS复位置位触发器
111 RS置位复位触发器
112 -(N)-RLO下降沿检测
113 -(P)-PLO上升沿检测
114 -(SAVE) 将RLO存入BR存储器
115 MEG地址下降沿检测
116 POS地址上升沿检测
117 立即读 *** 作
118 立即写 *** 作
2 比较指令
21 比较指令概述
22 CMPI整数比较
23 CMPD双整数比较
24 CMPR实数比较
3 转换指令
31 转换指令概述
32 BCD_IBCD码转换为整数
33 I_BCD整数转换为BCD码
34 I_DINT整数转换为双整数
35 BCD_DIBCD码转换为双整数
36 DI_BCD双整数转换为BCD码
37 DI_REAL双整数转换为浮点数
38 INV_I整数的二进制反码
39 INV_DI双整数的二进制反码
310 NEG_I整数的二进制补码
311 NEG_DI双整数的二进制补码
312 NEG_R浮点数求反
313 ROUND舍入为双整数
314 TRUNC舍去小数取整为双整数
315 CEIL上取整
316 FLOOR下取整
4 计数器指令
41 计数器指令概述
42 S_CUD加减计数
43 S_CU加计数器
44 S_CD减计数器
45 -(SC)计数器置初值
46 -(CU)加计数器线圈
47 -(CD)减计数器线圈
5 数据块指令
51 -(OPN)打开数据块:DB或DI
6 逻辑控制指令
61 逻辑控制指令概述
62 -(JMP)- 无条件跳转
63 -(JMP)- 条件跳转
64 -(JMPN)- 若非则跳转
65 LABEL标号
7 整数算术运算指令
71 整数算术运算指令概述
72 判断整数算术运算指令后状态字的位
73 ADD_I 整数加法
74 SUB_I 整数减法
75 MUL_I 整数乘法
76 DIV_I 整数除法
77 ADD_DI 双整数加法
78 SUB_DI 双整数减法
79 MUL_DI 双整数乘法
710 DIV_DI 双整数除法
711 MOD_DI 回送余数的双整数
8 浮点算术运算指令
81 浮点算术运算指令概述
82 判断浮点算术运算指令后状态字的位
83 基础指令
831 ADD_R实数加法
832SUB_R实数减法
833MUL_R实数乘法
834DIV_R实数除法
835 ABS浮点数绝对值运算
84 扩展指令
841SQR浮点数平方
842SQRT浮点数平方根
843EXP浮点数指数运算
844LN浮点数自然对数运算
845SIN浮点数正弦运算
846COS浮点数余弦运算
847TAN浮点数正切运算
848 ASIN浮点数反正弦运算
849 ACOS浮点数反余弦运算
8410ATAN浮点数反正切运算
9 赋值指令
91 MOVE赋值
10 程序控制指令
101 程序控制指令概述
102 -(Call)从线圈调用FC/SFC(无参数)
103 CALL_FB从方块调用FB
104 CALL_FC从方块调用FC
105 CALL_SFB从方块调用SFB
106 CALL_SFC从方块调用SFC
107 调用多北京块
108 从库中调用块
109 使用MCR功能的重要注意事项
1010-(MCR<)主控继电器接通
1011-(MCR>)主控继电器断开
1012 -(MCRA)主控继电器启动
1013 -(MCRD)主控继电器停止
1014 -(RET)返回
11 移位和循环指令
111 移位指令
1111 移位指令概述
1112 SHR_I整数右移
1113 SHR_DI双整数右移
1114 SHL_W字左移
1115 SHR_W字右移
1116 SHL_DW双字左移
1117 SHR_DW双字右移
112 循环指令
1121 循环指令概述
1122 ROL_DW双字左循环
1123 ROR_DW双字右循环
12 状态位指令
121 状态位指令概述
122 OV -||- 溢出异常位
123 OS -||- 存储溢出异常位
124 UO -||- 无序异常位
125 BR -||- 异常位二进制结果
126 ==0-||- 结果位等于"0"
127 <>0-||- 结果位不等于"0"
128 >0-||- 结果位大于"0"
129 <0-||- 结果位小于"0"
1210 >=0-||- 结果位大于等于"0"
1211 <=0-||- 结果位小于等于"0"
13 定时器指令
131 定时器指令概述
132 存储区中定时器的存储单元和定时器的组成部分
133 S_PULSE脉冲S5定时器
134 S_PEXT扩展脉冲S5定时器
135 S_ODT接通延时S5定时器
136 S_ODTS保持型接通延时S5定时器
137 S_OFFDT断电延时S5定时器
138 -(SP)脉冲定时器线圈
139 -(SE)扩展脉冲定时器线圈
1310 -(SD)接通延时定时器线圈
1311 -(SS)保持型接通延时定时器线圈
1312 -(SF)断开延时定时器线圈
14 字逻辑指令
141 字逻辑指令概述
142 WAND_W字和字相"与"
143 WOR_W字和字相"或"
144 WAND_DW双字和双字相"与"
145 WOR_DW双字和双字相"或"
146 WXOR_W字和字相"异或"
147 WXOR_DW双字和双字相"异或三菱 FX 系列PLC的20条基本逻辑指令。
取指令与输出指令(LD/LDI/LDP/LDF/OUT)
(1)LD(取指令) 一个常开触点与左母线连接的指令,每一个以常开触点开始的逻辑行都用此指令。
(2)LDI(取反指令) 一个常闭触点与左母线连接指令,每一个以常闭触点开始的逻辑行都用此指令。
(3)LDP(取上升沿指令) 与左母线连接的常开触点的上升沿检测指令,仅在指定位元件的上升沿(由OFF→ON)时接通一个扫描周期。
(4)LDF(取下降沿指令) 与左母线连接的常闭触点的下降沿检测指令。
(5)OUT(输出指令) 对线圈进行驱动的指令,也称为输出指令。
取指令与输出指令的使用说明:
1)LD、LDI指令既可用于输入左母线相连的触点,也可与ANB、ORB指令配合实现块逻辑运算;
2)LDP、LDF指令仅在对应元件有效时维持一个扫描周期的接通。图1中,当M1有一个下降沿时,则Y3只有一个扫描周期为ON。
3)LD、LDI、LDP、LDF指令的目标元件为X 、Y 、M 、T、C、S;
4)OUT指令可以连续使用若干次(相当于线圈并联),对于定时器和计数器,在OUT指令之后应设置常数K或数据寄存器。
5)OUT指令目标元件为Y、M、T、C和S,但不能用于X。
触点串联指令(AND/ANI/ANDP/ANDF)
(1)AND(与指令) 一个常开触点串联连接指令,完成逻辑“与”运算。
(2)ANI(与反指令) 一个常闭触点串联连接指令,完成逻辑“与非”运算。
(3)ANDP 上升沿检测串联连接指令。
(4)ANDF 下降沿检测串联连接指令。
触点串联指令的使用的使用说明:
1)AND、ANI、ANDP、ANDF都指是单个触点串联连接的指令,串联次数没有限制,可反复使用。
2)AND、ANI、ANDP、ANDF的目标元元件为X、Y、M、T、C和S。
3)OUT M101指令之后通过T1的触点去驱动Y4称为连续输出。
触点并联指令(OR/ORI/ORP/ORF)
(1)OR(或指令) 用于单个常开触点的并联,实现逻辑“或”运算。
(2)ORI(或非指令) 用于单个常闭触点的并联,实现逻辑“或非”运算。
(3)ORP 上升沿检测并联连接指令。
(4)ORF 下降沿检测并联连接指令。
触点并联指令的使用说明:
1)OR、ORI、ORP、ORF指令都是指单个触点的并联,并联触点的左端接到LD、LDI、LDP或LPF处,右端与前一条指令对应触点的右端相连。触点并联指令连续使用的次数不限;
2)OR、ORI、ORP、ORF指令的目标元件为X、Y、M、T、C、S。
块 *** 作指令(ORB / ANB)
(1)ORB(块或指令) 用于两个或两个以上的触点串联连接的电路之间的并联。
ORB指令的使用说明:
1)几个串联电路块并联连接时,每个串联电路块开始时应该用LD或LDI指令;
2)有多个电路块并联回路,如对每个电路块使用ORB指令,则并联的电路块数量没有限制;
3)ORB指令也可以连续使用,但这种程序写法不推荐使用,LD或LDI指令的使用次数不得超过8次,也就是ORB只能连续使用8次以下。
(2)ANB(块与指令) 用于两个或两个以上触点并联连接的电路之间的串联。ANB指令的使用说明:
1)并联电路块串联连接时,并联电路块的开始均用LD或LDI指令;
2)多个并联回路块连接按顺序和前面的回路串联时,ANB指令的使用次数没有限制。也可连续使用ANB,但与ORB一样,使用次数在8次以下。
置位与复位指令(SET/RST)
(1)SET(置位指令) 它的作用是使被 *** 作的目标元件置位并保持。
(2)RST(复位指令) 使被 *** 作的目标元件复位并保持清零状态。
SET、RST指令的使用如图6所示。当X0常开接通时,Y0变为ON状态并一直保持该状态,即使X0断开Y0的ON状态仍维持不变;只有当X1的常开闭合时,Y0才变为OFF状态并保持,即使X1常开断开,Y0也仍为OFF状态。
SET 、RST指令的使用说明:
1)SET指令的目标元件为Y、M、S,RST指令的目标元件为Y、M、S、T、C、D、V 、Z。RST指令常被用来对D、Z、V的内容清零,还用来复位积算定时器和计数器。
2)对于同一目标元件,SET、RST可多次使用,顺序也可随意,但最后执行者有效。
微分指令(PLS/PLF)
(1)PLS(上升沿微分指令) 在输入信号上升沿产生一个扫描周期的脉冲输出。
(2)PLF(下降沿微分指令) 在输入信号下降沿产生一个扫描周期的脉冲输出。
利用微分指令检测到信号的边沿,通过置位和复位命令控制Y0的状态。
PLS、PLF指令的使用说明:
1)PLS、PLF指令的目标元件为Y和M;
2)使用PLS时,仅在驱动输入为ON后的一个扫描周期内目标元件ON,如图3-21所示,M0仅在X0的常开触点由断到通时的一个扫描周期内为ON;使用PLF指令时只是利用输入信号的下降沿驱动,其它与PLS相同。
主控指令(MC/MCR)
(1)MC(主控指令) 用于公共串联触点的连接。执行MC后,左母线移到MC触点的后面。
(2)MCR(主控复位指令) 它是MC指令的复位指令,即利用MCR指令恢复原左母线的位置。
在编程时常会出现这样的情况,多个线圈同时受一个或一组触点控制,如果在每个线圈的控制电路中都串入同样的触点,将占用很多存储单元,使用主控指令就可以解决这一问题。MC、MCR指令的使用如图8所示,利用MC N0 M100实现左母线右移,使Y0、Y1都在X0的控制之下,其中N0表示嵌套等级,在无嵌套结构中N0的使用次数无限制;利用MCR N0恢复到原左母线状态。如果X0断开则会跳过MC、MCR之间的指令向下执行。
MC、MCR指令的使用说明:
1)MC、MCR指令的目标元件为Y和M,但不能用特殊辅助继电器。MC占3个程序步,MCR占2个程序步;
2)主控触点在梯形图中与一般触点垂直(如图3-22中的M100)。主控触点是与左母线相连的常开触点,是控制一组电路的总开关。与主控触点相连的触点必须用LD或LDI指令。
3)MC指令的输入触点断开时,在MC和MCR之内的积算定时器、计数器、用复位/置位指令驱动的元件保持其之前的状态不变。非积算定时器和计数器,用OUT指令驱动的元件将复位,22中当X0断开,Y0和Y1即变为OFF。
4)在一个MC指令区内若再使用MC指令称为嵌套。嵌套级数最多为8级,编号按N0→N1→N2→N3→N4→N5→N6→N7顺序增大,每级的返回用对应的MCR指令,从编号大的嵌套级开始复位。
堆栈指令(MPS/MRD/MPP)
堆栈指令是FX系列中新增的基本指令,用于多重输出电路,为编程带来便利。在FX系列PLC中有11个存储单元,它们专门用来存储程序运算的中间结果,被称为栈存储器。
(1)MPS(进栈指令) 将运算结果送入栈存储器的第一段,同时将先前送入的数据依次移到栈的下一段。
(2)MRD(读栈指令) 将栈存储器的第一段数据(最后进栈的数据)读出且该数据继续保存在栈存储器的第一段,栈内的数据不发生移动。
(3)MPP(出栈指令) 将栈存储器的第一段数据(最后进栈的数据)读出且该数据从栈中消失,同时将栈中其它数据依次上移。
堆栈指令的使用说明:
1)堆栈指令没有目标元件;
2)MPS和MPP必须配对使用;
3)由于栈存储单元只有11个,所以栈的层次最多11层。
逻辑反、空 *** 作与结束指令(INV/NOP/END)
(1)INV(反指令) 执行该指令后将原来的运算结果取反。反指令的使用如图10所示,如果X0断开,则Y0为ON,否则Y0为OFF。使用时应注意INV不能象指令表的LD、LDI、LDP、LDF那样与母线连接,也不能象指令表中的OR、ORI、ORP、ORF指令那样单独使用。
(2)NOP(空 *** 作指令) 不执行 *** 作,但占一个程序步。执行NOP时并不做任何事,有时可用NOP指令短接某些触点或用NOP指令将不要的指令覆盖。当PLC执行了清除用户存储器 *** 作后,用户存储器的内容全部变为空 *** 作指令。
(3)END(结束指令) 表示程序结束。若程序的最后不写END指令,则PLC不管实际用户程序多长,都从用户程序存储器的第一步执行到最后一步;若有END指令,当扫描到END时,则结束执行程序,这样可以缩短扫描周期。在程序调试时,可在程序中插入若干END指令,将程序划分若干段,在确定前面程序段无误后,依次删除END指令,直至调试结束。
FX系列PLC的步进指令
1.步进指令(STL/RET)
步进指令是专为顺序控制而设计的指令。在工业控制领域许多的控制过程都可用顺序控制的方式来实现,使用步进指令实现顺序控制既方便实现又便于阅读修改。
FX2N中有两条步进指令:STL(步进触点指令)和RET(步进返回指令)。
STL和RET指令只有与状态器S配合才能具有步进功能。如STL S200表示状态常开触点,称为STL触点,它在梯形图中的符号为-|| ||- ,它没有常闭触点。我们用每个状态器S记录一个工步,例STL S200有效(为ON),则进入S200表示的一步(类似于本步的总开关),开始执行本阶段该做的工作,并判断进入下一步的条件是否满足。一旦结束本步信号为ON,则关断S200进入下一步,如S201步。RET指令是用来复位STL指令的。执行RET后将重回母线,退出步进状态。
2.状态转移图
一个顺序控制过程可分为若干个阶段,也称为步或状态,每个状态都有不同的动作。当相邻两状态之间的转换条件得到满足时,就将实现转换,即由上一个状态转换到下一个状态执行。我们常用状态转移图(功能表图)描述这种顺序控制过程。,用状态器S记录每个状态,X为转换条件。如当X1为ON时,则系统由S20状态转为S21状态。
状态转移图中的每一步包含三个内容:本步驱动的内容,转移条件及指令的转换目标。如图1中S20步驱动Y0,当X1有效为ON时,则系统由S20状态转为S21状态,X1即为转换条件,转换的目标为S21步。
3.步进指令的使用说明
1)STL触点是与左侧母线相连的常开触点,某STL触点接通,则对应的状态为活动步;
2)与STL触点相连的触点应用LD或LDI指令,只有执行完RET后才返回左侧母线;
3)STL触点可直接驱动或通过别的触点驱动Y、M、S、T等元件的线圈;
4)由于PLC只执行活动步对应的电路块,所以使用STL指令时允许双线圈输出(顺控程序在不同的步可多次驱动同一线圈);
5) STL触点驱动的电路块中不能使用MC和MCR指令,但可以用CJ指令;
6)在中断程序和子程序内,不能使用STL指令。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)