n=(an-a1)/d+1
;
等差数列的通项公式an=a1+(n-1)d,解n即可得到上式
这个还可以求d=(an-a1)/(n-1)
求d还有很多推广形式:
d=(an-am)/(n-m)————————这个只要用an和am相减即可(用通项相减)清楚定义的话,这些结论可以直接验证
由定义,复数a是一个n次单位根当且仅当a^n = 1
(1) 若a,b都是n次单位根,则a^n = b^n = 1
于是(ab)^n = a^n·b^n = 1,即ab也是n次单位根
(2) 若a是n次单位根,则a^n = 1
显然a ≠ 0,1/a有定义,且(1/a)^n = 1/a^n = 1,即1/a也是n次单位根
(3) 首先若z = 0,则z的n次方根只有0,命题显然成立以下只考虑z ≠ 0的情况
若a是z的一个n次方根,则a^n = z可知a ≠ 0
对z的任意一个n次方根b,有b^n = z于是(b/a)^n = b^n/a^n = 1
即b/a是一个n次单位根,故b = a·(b/a)可写为a与某个n次单位根的乘积
反之,若c是一个n次单位根,有c^n = 1
于是(ac)^n = a^n·c^n = z,即ac必为z的n次方根Σ(1/n)
其中n=1,2,3
是没有一个具体的通项公式的,但是如果当n到了很大的时候,可以有一个很简单的求大概值方法
上面那个数列和是不会收敛的,将一直发散下去。
n很大时,可以用∫(1/x)来近似替换,这个积分计算出来是ln(x)
所以n很大时,这个数列的近似值是ln(n)
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)