1、若是同分母分数,则分母不变,分子相加、减。
2、若是异分母分数,则先通分,再根据同分母分数的加减计算方法进行计算。
分数原是指整体的一部分,或更一般地,任何数量相等的部分。表现形式为一个整数a和一个整数b的比(a为b倍数的假分数是否属于分数存在争议)。
分数表示一个数是另一个数的几分之几,或一个事件与所有事件的比例。把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。分子在上,分母在下。
1、同分母分数相加减,分母不变,即分数单位不变,分子相加减,能约分的要约分。
例:
2、异分母分数相加减,先通分,即运用分数的基本性质将异分母分数转化为同分母分数,改变其分数单位而大小不变,再按同分母分数相加减法去计算,最后能约分的要约分。
例:
分数表示一个数是另一个数的几分之几,或一个事件与所有事件的比例。把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。
扩展资料:
小学阶段与小学阶段以后的分数定义有所不同,小学阶段7/7、12/6等都姑且视为分数。但实际上,只有不等于整数的有理数才是分数,所以7/7、12/6等都不是分数。
把单位“1”平均分成若干份,表示这样的一份或几份的数叫做真分数如:3/8或2/5,也可能成为假分数,也就是分子大于或者等于分母,例如8/3。分母表示把一个物体平均分成几份,分子表示取了其中的几份。
分子在上,分母在下,也可以把它当做除法来看,用分子除以分母(因0在除法不能做除数,所以分母不能为0),相反除法也可以改为用分数表示。
参考资料:
1、异分母分数的加法:要把异分母分数相加,然后通分,接着把分子相加,分母不要变,计算的结果,能约分的要约分,是假分数的要化成带分数或整数。
异分母分数的减法:要把异分母分数相减,然后通分,接着把分子相减,分母不要变,计算的结果,能约分的要约分,是假分数的要化成带分数或整数。
2、同分母分数的加法:只要把分子相加,分母不要变,计算的结果,能约分的要约分,是假分数的要化成带分数或整数。
同分母分数的减法:要把分子相减,分母不要变,计算的结果,能约分的要约分,是假分数的要化成带分数或整数。
3、分数混合加减法:有异分母的要先化成同分母,然后再按照顺序进行加减,计算的结果,能约分的要约分,是假分数的要化成带分数或整数。
分数乘法运算法则
1、分数乘整数时,用分数的分子和整数相乘的积做分子,分母不变。能约分的要先约分。
2、分数乘分数时,用分子相乘的积做分子,分母相乘的积做分母,能约分的先约分。
3、分数乘小数时,可以把分数化为小数,也可以把小数化成分数,能约分的先约分。
分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)