根据基极所需的偏置电压以及电源电压大小,用电阻分压公式计算Ub=VccR2/(R1+R2),电阻值的大小应该在kΩ~十kΩ数量级,保证电阻上的电流比基极电流大一个数量级。
例如基极偏压需要2V,电源电压6V,取下偏置电阻10kΩ,可以算出上偏置电阻为20kΩ。
上拉电阻:一般应用于OC输出电路,比如P0口设定为输入/输出时,如果没有上拉电阻,当向P0口写入FFH时,P0口依然不能输出高电平,此时P0处于悬空状态,当接有上拉电阻时会输出FFH。
下拉电阻:有时候是为了加快信号的反映速度,有时候是为了固定电平状态或抗干扰。
拉电流:当此点输出为高电平时,此点可以向外输出的电流。
灌电流:当此点输出为低电平时,此点可以从外部吸入的电流。
灌电流对单片机的影响:由于单片机内部线路较细,如果灌电流太大会烧毁芯片,一般单片机的总电流都要求小于50毫安。
如下图的两个 Bias Resaitor 电阻就是上拉电阻和下拉电阻。图中,上部的一个Bias Resaitor 电阻因为是接地,因而叫做下拉电阻,意思是将电路节点A的电平向低方向(地)拉;同样,图中,下部的一个Bias Resaitor 电阻因为是电源(正),因而叫做上拉电阻,意思是将电路节点A的电平向高方向(电源正)拉。当然,许多电路中上拉下拉电阻中间的那个12k电阻是没有的或者看不到的。我找来这个图是RS-485/RS-422总线上的,可以一下子认识上拉下拉的意思。但许多电路只有一个上拉或下拉电阻,而且实际中,还是上拉电阻的为多
(1)NPN型三极管,适合射极接GND集电极接负载到VCC的情况。只要基极电压高于射极电压(此处为GND)07V,即发射结正偏(VBE为正),NPN型三极管即可开始导通。基极用高电平驱动NPN型三极管导通(低电平时不导通);基极除限流电阻外,更优的设计是,接下拉电阻10-20k到GND;优点是,①使基极控制电平由高变低时,基极能够更快被拉低,NPN型三极管能够更快更可靠地截止;②系统刚上电时,基极是确定的低电平。
(2)PNP型三极管,适合射极接VCC集电极接负载到GND的情况。只要基极电压低于射极电压(此处为VCC)07V,即发射结反偏(VBE为负),PNP型三极管即可开始导通。
基极用低电平驱动PNP型三极管导通(高电平时不导通);基极除限流电阻外,更优的设计是,接上拉电阻10-20k到VCC;优点是,①使基极控制电平由低变高时,基极能够更快被拉高,PNP型三极管能够更快更可靠地截止;②系统刚上电时,基极是确定的高电平。
一、上拉就是将不确定的信号通过一个电阻钳位在高电平,电阻同时起限流作用。
上拉电阻的作用:
1、当TTL电路驱动CMOS电路时,如果电路输出的高电平低于CMOS电路的最低高电平(一般为35V), 这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
2、OC门电路必须使用上拉电阻,以提高输出的高电平值。
3、为增强输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
4、在CMOS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻以降低输入阻抗, 提供泄荷通路。
5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限,增强抗干扰能力。
6、提高总线的抗电磁干扰能力,管脚悬空就比较容易接受外界的电磁干扰。
7、长线传输中电阻不匹配容易引起反射波干扰,加上、下拉电阻是电阻匹配,有效的抑制反射波干扰。
二、下拉电阻是直接接到地上,接二极管的时候电阻末端是低电平。
下拉电阻的作用:
1、提高电压准位:
a、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为35V), 这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
b、OC门电路必须加上拉电阻,以提高输出的高电平值。
2、加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
3、N/Apin防静电、防干扰:在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗, 提供泄荷通路。
同时管脚悬空就比较容易接受外界的电磁干扰。
4、电阻匹配,抑制反射波干扰:长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
5、预设空间状态/缺省电位:在一些 CMOS 输入端接上或下拉电阻是为了预设缺省电位。 当你不用这些引脚的时候, 这些输入端下拉接 0 或上拉接 1。在I2C总线等总线上,空闲时的状态是由上下拉电阻获得
6、提高芯片输入信号的噪声容限:输入端如果是高阻状态,或者高阻抗输入端处于悬空状态,此时需要加上拉或下拉,以免收到随机电平而影响电路工作。
同样如果输出端处于被动状态,需要加上拉或下拉,如输出端仅仅是一个三极管的集电极。从而提高芯片输入信号的噪声容限增强抗干扰能力。
扩展资料:
上拉电阻的缺点:
当电流流经时其将消耗额外的能量,并且可能会引起输出电平的延迟。某些逻辑芯片对于经过上拉电阻引入的电源供应瞬间状态较为敏感,这样就迫使为上拉电阻配置独立的、带有滤波的电压源。
下拉电阻原则和上拉电阻是一样的,下拉电阻的选择应结合开关管特性和下级电路的输入特性进行设定,主要需要考虑以下几个因素:
1、驱动能力与功耗的平衡。以上拉电阻为例,一般地说,上拉电阻越小,驱动能力越强,但功耗越大,设计时应注意两者之间的均衡。
2、下级电路的驱动需求。同样以上拉电阻为例,当输出高电平时,开关管断开,上拉电阻应适当选择以能够向下级电路提供足够的电流。
3、高低电平的设定。不同电路的高低电平的门槛电平会有不同,电阻应适当设定以确保能输出正确的电平。以上拉电阻为例,当输出低电平时,开关管导通,上拉电阻和开关管导通电阻分压值应确保在零电平门槛之下。
4、 频率特性。以上拉电阻为例,上拉电阻和开关管漏源级之间的电容和下级电路之间的输入电容会形成RC延迟,电阻越大,延迟越大。上拉电阻的设定应考虑电路在这方面的需求。
OC门输出高电平时是一个高阻态,其上拉电流要由上拉电阻来提供,设输入端每端口不大于100uA,设输出口驱动电流约500uA,标准工作电压是5V,输入口的高低电平门限为08V(低于此值为低电平);2V(高电平门限值)。
参考资料来源:百度百科——上拉电阻
参考资料来源:百度百科——下拉电阻
这个电路的错误在三极管的接法上。接三极管的目的是将358来的信号去驱动单片机输入,但没有达到驱动要求,基极输入是最高2V,但单片机的输入高电平最好是45v以上。如果采用这种接法,在P10脚还必须接下拉电阻。因为358输出达不到要求,建议改三极管接法,VCC到P10接3K电阻,三极管集电极接P10,发射极接地,基极不变。改程序,P10输入低电平有效。欢迎分享,转载请注明来源:内存溢出
评论列表(0条)