求二阶矩阵的逆的简便方法有没有什么

求二阶矩阵的逆的简便方法有没有什么,第1张

可以直接套用公式。

|a b|

|c d|

=1/(ad-bc)|d -b|

|-c a|

对角线交换,副对角线取负,之后还要再除以之前那个矩阵的行列式的值,所以会差一个1/3的比例。当矩阵行列式的值为0时,这种方法用不了,因为0做不了除数。

扩展资料:

(1)逆矩阵的唯一性

若矩阵A是可逆的,则A的逆矩阵是唯一的,并记作A的逆矩阵为A-1 。

(2)n阶方阵A可逆的充分必要条件是r(A)=m。

对n阶方阵A,若r(A)=n,则称A为满秩矩阵或非奇异矩阵。

(3)任何一个满秩矩阵都能通过有限次初等行变换化为单位矩阵。

满秩矩阵A的逆矩阵A可以表示成有限个初等矩阵的乘积。

参考资料来源:百度百科-逆矩阵

二矩阵求逆矩阵:若ad-bc≠,则:矩阵求逆,即求矩阵的逆矩阵。矩阵线性代数的上要内容,很多实际问题用矩阵的思想去解既简单又快捷。

矩阵理论的很重要的内容,逆矩阵的求法自然也就成为线性代数研究的主要内容之一。注记忆方法;主对角线交换位置。主对角线元素互换并除以行列式的值,副对角线元素变号并除以行列式的值。

可逆矩阵的性质定理:

1、可逆矩阵一定是方阵。

2、如果矩阵A是可逆的,其逆矩阵是唯一回的。

3、A的逆矩阵的逆矩阵还是A。记作(A-1)-1=A。

4、可逆矩阵A的转置矩阵AT也可逆,并且(AT)-1=(A-1)T (转置的逆等于逆的转置)。

5、若矩阵A可逆,则矩阵A满足消去律。即AB=O(或BA=O),则B=O,AB=AC(或BA=CA),则B=C。

6、两个答可逆矩阵的乘积依然可逆。

7、矩阵可逆当且仅当它是满秩矩阵。

看成伴随了。。多谢提醒。。
A乘A=|A| E
A^-1= A/|A|
这里|A|=-4
求二阶矩阵的伴随矩阵A
可以直接交换A的主对角线两端 副对角线的位置不变 符号改变
得到
0 -2
-2 0

所以A^-1= A/|A|= 0 1/2
1/2 0

二矩阵求逆矩阵:若ad-bc≠,则:矩阵求逆,即求矩阵的逆矩阵。矩阵线性代数的上要内容,很多实际问题用矩阵的思想去解既简单又快捷。

矩阵理论的很重要的内容,逆矩阵的求法自然也就成为线性代数研究的主要内容之一。注记忆方法;主对角线交换位置。

扩展资料:

(1)逆矩阵的唯一性:

若矩阵A是可逆的,则A的逆矩阵是唯一的,并记作A的逆矩阵为A-1。

(2)n阶方阵A可逆的充分必要条件是r(A)=m。

对n阶方阵A,若r(A)=n,则称A为满秩矩阵或非奇异矩阵。

(3)任何一个满秩矩阵都能通过有限次初等行变换化为单位矩阵。

推论 满秩矩阵A的逆矩阵A可以表示成有限个初等矩阵的乘积。

A=
a b
c d
当A可逆时
A^-1= (1/|A|) A
= 1/(ad-bc)
d -b
-c a

这与已知a求a^-1是一样的

这是因为

a=(a^-1)^-1

a=abcd

利用公式

a^-1=(1/|a|)a

其中:

|a|=

ad-bc

a=d-b-ca

注记忆方法;主对角线交换位置。

扩展资料:

(1)逆矩阵的唯一性

若矩阵A是可逆的,则A的逆矩阵是唯一的,并记作A的逆矩阵为A-1

(2)n阶方阵A可逆的充分必要条件是r(A)=m

对n阶方阵A,若r(A)=n,则称A为满秩矩阵或非奇异矩阵

(3)任何一个满秩矩阵都能通过有限次初等行变换化为单位矩阵

推论 满秩矩阵A的逆矩阵A可以表示成有限个初等矩阵的乘积

参考资料来源:百度百科-逆矩阵


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12698003.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-27
下一篇 2023-05-27

发表评论

登录后才能评论

评论列表(0条)

保存