怎么算圆的直径?

怎么算圆的直径?,第1张

根据题目求解圆的直径,应该利用题目所给条件,同时结合圆的直径的性质,进行求解。

圆直径的性质有:

在同一个圆中直径的长度是半径的2倍

在同一个圆中直径是最长的弦

直径:指通过一平面图形或立体(如圆、圆锥截面、球、立方体)中心到边上两点间的距离,通常用字母“d”表示。连接圆周上两点并通过圆心的直线称圆直径,连接球面上两点并通过球心的直线称球直径。直径是通过圆心且两个端点都在圆上任意一点的线段一般用字母d表示。直径所在的直线是圆的对称轴。直径的两个端点在圆上,圆心是直径的中点。直径将圆分为面积相等的两部分,中间的线段就叫直径(每一个部分成为一个半圆)。

圆的直径性质证明:

1在同一个圆中直径的长度是半径的两倍。

证明:设有直径AB,根据直径的定义,圆心O在AB上。∵AO=BO=r,∴AB=2r

并且,在同一个圆中弦长为半径2倍的弦都是直径。即若线段d=2r(r是半径长度),那么d是直径。

反证法:假设AB不是直径,那么过点O作直径AB',根据上面的结论有AB'=2r=AB

∴∠ABB'=∠AB'B(等边对等角)

又∵AB'是直径,∴∠ABB'=90°(直径所对的圆周角是直角)

那么△ABB‘中就有两个直角,与内角和定理矛盾

∴假设不成立,AB是直径

2在同一个圆中直径是最长的弦。

证明:设AB是⊙O的直径,CD是非直径的任意一条弦,则可证明AB>CD恒成立。

连接OC、OD,根据圆的定义,OA=OB=OC=OD=半径

∵CD不是直径

∴CD不经过圆心O,即O、C、D三点可以构成三角形

在△OCD中,根据三角形三边关系可知OC+OD>CD

∵OA=OB=OC=OD

∴OA+OB>CD

即AB>CD


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12704081.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-27
下一篇 2023-05-27

发表评论

登录后才能评论

评论列表(0条)

保存