大数据工程师就业如何?

大数据工程师就业如何?,第1张

数据的就业前景很广阔。
就先拿大数据里比较火的数据分析举例吧。
数据分析的两个主要就业方向,一个是统计学方向,一个是运筹学方向,我们分别来看看这两者具体有哪些相应的岗位
首先是统计学方向。
这个方向的职位其实一直都有,只是说现在用的一些方法,技术手段得到了一定的提升。原来公司只有一些有限的经营数据或市场数据,基本上用 excel 就能解决了,现在我们有了很大的数据量,也有了更多的高级的分析软件,比如 SAS 、 R 等等。用这些软件,我们可以在大量的数据中,挖掘出一些核心的数据信息,来找出商业活动的驱动力。
从就业方向来说,最典型的是以互联网公司为代表的信息化程度比较高的企业。这些公司在日常业务中会产生大量的数据,数据分析人员必须从繁杂的数据中挖掘出有效信息,来给运营和决策提供支持。
典型的公司有 BATJ ,其中一些相关的团队包括产品的运营团队、广告效果分析团队、游戏的用户数据处理团队等等。其他还有一些互联网公司,比如美团、携程、饿了么等等。
在这些互联网公司里面,数据分析工作主要分两个方向:
一个是做运营分析,就是前面讲的这类工作内容。
另一个就是产品开发的分析,比如把相关的数据抽象出来建模,做一些用于判断的模型,比如回归模型等,以 API 的形式,给到客户。客户只要把相关的数据导进去,就能通过这个模型作出一个判断。
比较典型的例子就是反诈骗的一些产品,背后是好人的行为数据,以及一些坏人的行为数据,做出一个「0」「1」的好坏判断模型。当你把一个不知道结果的数据,通过 API 接口输入进这个模型后,就会得出结论这个是好人还是坏人,从而对业务作出指导。
除了互联网公司以外,咨询公司也非常注重数据这块的工作。

比如麦肯锡,相关的数据分析已经成为公司的重要驱动力之一。
另外,四大咨询公司、一些 IT 咨询公司,比如埃森哲、印度的 Infosys 等,以及一些本土的咨询公司,比如久谦,还有老牌的基于数据分、市场分析的公司,比如尼尔森,也有相应的数据分析岗位。

很好找工作。随着互联网的飞速发展啊,如今也叫数据时代,越来越多的人依赖于互联网络,它已经渗透到了生活的方方面面,可想而知,计算机行业在未来的发展前景可谓是前途无量。而大数据作为IT行业的一种,肯定是很好找工作的,好就业,工资高。

大数据的学习阶段

阶段一,主要是学习大数据基础,主要是Java基础和Linux基础。

大数据的主要编程语言是Java,而主要的开发和运行在Linux环境当中完成,所以这两项基础必备。Java基础主要在Java SE、数据库方面,需要额外重视,而Linux,掌握基本的系统命令就能慢慢上手类 ,多用会越来越熟练。

阶段二,就是大数据技术组件框架的学习,这部分也是重点。

大数据技术体系庞杂,基础技术覆盖数据采集、数据预处理、分布式存储、NOSQL数据库、多模式计算(批处理、在线处理、实时流处理、内存处理)、多模态计算(图像、文本、视频、音频)、数据仓库、数据挖掘、机器学习、人工智能、深度学习、并行计算、可视化等各种技术范畴和不同的层面。

但是从企业应用的角度来说,主要是基于开源框架开发应用的多,所以就是主流的大数据技术框架的学习,包括Hadoop、Spark、Storm、Flink等一系列框架及其生态圈。

阶段三,是项目练手。

招聘面试的时候,企业会很看重这方面,实战能力,能够基于具体的需求,去完成开发,给出合理的技术解决方案。

互联网行业目前还是最热门的行业之一,学习IT技能之后足够优秀是有机会进入腾讯、阿里、网易等互联网大厂高薪就业的,发展前景非常好,普通人也可以学习。

想要系统学习,你可以考察对比一下开设有相关专业的热门学校,好的学校拥有根据当下企业需求自主研发课程的能力,建议实地考察对比一下。

祝你学有所成,望采纳

北大青鸟学生课堂实录

大数据技术与应用专业或相关专业就业前景相当广阔。

近几年来,互联网行业发展风起云涌,而移动互联网、电子商务、物联网以及社交媒体的快速发展更促使我们快速进入了大数据时代。截止到目前,人们日常生活中的数据量已经从TB(1024GB=1TB)级别一跃升到PB(1024TB=1PB)、EB(1024PB=1EB)乃至ZB(1024EB=1ZB)级别,数据将逐渐成为重要的生产因素,人们对于海量数据的运用将预示着新一波生产率增长和消费者盈余浪潮的到来。大数据时代,专业的大数据人才必将成为人才市场上的香饽饽。

因此,当下大数据从业人员的两个主要趋势是:

大数据领域从业人员的薪资将继续增长

大数据人才供不应求。

另外,大数据专业毕业生就业岗位非常多,比如:Java大数据分布式程序开发、大数据集成平台的应用与开发、大数据平台运维、Java海量数据分布式编程、大数据架构设计、大数据分析、Java大数据分布式开发、基于大数据平台的程序开发、数据可视化、大数据挖掘、Java海量数据分布式编程、大数据架构设计等。

大数据:

1、数据分析成为大数据技术的核心 数据分析在数据处理过程中占据十分重要的位置,随着时代的发展,数据分析也会逐渐成为大数据技术的核心。大数据的价值体现在对大规模数据集合的智能处理方面,进而在大规模的数据中获取有用的信息。

2、广泛采用实时性的数据处理方式 在现如今人们的生活中,人们获取信息的速度较快。为了更好地满足人们的需求,大数据处理系统的处理方式也需要不断地与时俱进。目前大数据的处理系统采用的主要是批量化的处理方式,这种数据处理方式有一定的局限性,主要是用于数据报告的频率不需要达到分钟级别的场合,而对于要求比较高的场合,这种数据处理方式就达不到要求。传统的数据仓库系统、链路挖掘等应用对数据处理的时间往往以小时或者天为单位。

3、基于云的数据分析平台将更加完善 近几年来,云计算技术发展的越来越快,与此相应的应用范围也越来越宽。云计算的发展为大数据技术的发展提供了一定的数据处理平台和技术支持。云计算为大数据提供了分布式的计算方法、可以d性扩展、相对便宜的存储空间和计算资源,这些都是大数据技术发展中十分重要的组成部分。

4、开源软件的发展将会成为推动大数据技术发展的新动力 开源软件是在大数据技术发展的过程中不断研发出来的。这些开源软件对各个领域的发展、人们的日常生活具有十分重要的作用。开源软件的发展可以适当的促进商业软件的发展,以此作为推动力,从而更好地服务于应用程序开发工具、应用、服务等各个不同的领域。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12724263.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-27
下一篇 2023-05-27

发表评论

登录后才能评论

评论列表(0条)

保存