矩阵的标准型有3种:
1、阶梯型矩阵:阶梯型矩阵是矩阵的一种类型。它的基本特征是,若所给矩阵为阶梯型矩阵则矩阵中每一行的第一个不为零的元素的左边及其所在列以下全为零。
2、行简化梯矩阵:行阶梯形矩阵是指线性代数中的矩阵。在所有全零行的上面,即全零行都在矩阵的底部。
3、等价标准型矩阵:等价标准型矩阵经过多次变换以后,得到一种最简单的矩阵,就是这个矩阵的左上角是一个单位矩阵,其余元素都是零,那么这个矩阵就是原来矩阵的等价标准型。
矩阵标准型是:如果矩阵B可以由A经过一系列初等变换得到那么矩阵A与B是等价的。
在矩阵中可画出一条阶梯线,线的下方全为0,每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖线(每段竖线的长度为一行)后面的第一个元素为非零元,也就是非零行的第一个非零元,则称该矩阵为行阶梯矩阵。
矩阵应用
线性变换及其所对应的对称,在现代物理学中有着重要的角色。例如,在量子场论中,基本粒子是由狭义相对论的洛伦兹群所表示,具体来说,即它们在旋量群下的表现。内含泡利矩阵及更通用的狄拉克矩阵的具体表示。
在费米子的物理描述中,是一项不可或缺的构成部分,而费米子的表现可以用旋量来表述。描述最轻的三种夸克时,需要用到一种内含特殊酉群SU(3)的群论表示;物理学家在计算时会用一种更简便的矩阵表示,叫盖尔曼矩阵。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)