glm表示广义线性回归,data表示y,x1,x2所在的数据集,family中的link用来选择回归类型,logit表示选择logistic回归spss没有专门处理条件logistic回归的程序,不过可以用spss生存分析中的cox回归拟合条件logistic回归,具体方法你可以在百度文库中搜索“以SPSS软件包拟合条件logistic回归模型的探索”,里面有详细的步骤。
需要用spss来制作,制作方法如下:
1打开数据以后,菜单栏上依次点击:analyse--regression--binary logistic,打开二分回归对话框
2将因变量和自变量放入格子的列表里,如图所示,上面的是因变量,下面的是自变量,看到这里有三个自变量
3设置回归方法,这里选择最简单的方法:enter,它指的是将所有的变量一次纳入到方程。其他方法都是逐步进入的方法,在前面的文章中有介绍,这里就不再熬述。
4点击ok,开始处理数据并检验回归方程,等待一会就会d出数据结果窗口
5看到的第一个结果是对case的描述,第一个列表告诉有多少数据参与的计算,有多少数据是缺省值;第二个列表告诉因变量的编码方式,得分为1代表患病,得分为0代表没有患病
6这个列表告诉在没有任何自变量进入以前,预测所有的case都是患病的正确率,正确率为%526
7下面这个列表告诉你在没有任何自变量进入以前,常数项的预测情况。B是没有引入自变量时常数项的估计值,SE它的标准误,Wald是对总体回归系数是否为0进行统计学检验的卡方。
8下面这个表格结果,通过sig值可以知道如果将模型外的各个变量纳入模型,则整个模型的拟合优度改变是否有统计学意义。 sig值小于005说明有统计学意义
9这个表格是对模型的全局检验,为似然比检验,供给出三个结果:同样sig值<005表明有统计学意义。
10下面的结果展示了-2log似然值和两个伪决定系数。两个伪决定系数反应的是自变量解释了因变量的变异占因变量的总变异的比例。他们俩的值不同因为使用的方法不同。
11分类表,这里展示了使用该回归方程对case进行分类,其准确度为%718。
12最后是输出回归方程中的各变量的系数和对系数的检验额值,sig值表明该系数是否具有统计学意义。到此,回归方程就求出来了。
1打开数据,依次点击:analyse--regression--binarylogistic,打开二分回归对话框。
2将因变量和自变量放入格子的列表里,上面的是因变量,下面的是自变量(单变量拉入一个,多因素拉入多个)。
3设置回归方法,这里选择最简单的方法:enter,它指的是将所有的变量一次纳入到方程。其他方法都是逐步进入的方法。
4等级资料,连续资料不需要设置虚拟变量。多分类变量需要设置虚拟变量。
虚拟变量ABCD四类,以a为参考,那么解释就是b相对于a有无影响,c相对于a有无影响,d相对于a有无影响。
5选项里面至少选择95%CI。
点击ok。
统计专业研究生工作室原创,请勿复杂粘贴Logistic模型(虫口模型)
logistic回归又称logistic回归分析,主要在流行病学中应用较多,比较常用的情形是探索某疾病的危险因素,根据危险因素预测某疾病发生的概率,等等。例如,想探讨胃癌发生的危险因素,可以选择两组人群,一组是胃癌组,一组是非胃癌组,两组人群肯定有不同的体征和生活方式等。这里的因变量就是是否胃癌,即“是”或“否”,为两分类变量,自变量就可以包括很多了,例如年龄、性别、饮食习惯、幽门螺杆菌感染等。自变量既可以是连续的,也可以是分类的。通过logistic回归分析,就可以大致了解到底哪些因素是胃癌的危险因素。如果要弄清楚原理,可以看格林或平狄克的计量经济学,上面有比较详细的讲解。另外,向你推荐一本不错的书:王济川、郭志刚,Logistic回归模型——方法与应用,北京:高等教育出版社,2001。浏览一下这三本书的相关内容,你基本上可以弄清楚概率估计模型,至于网上有没有电子版的书我就不太清楚了。这里,我可以先简单的回答你这个问题。首先,通常人们将“Logistic回归”、“Logistic模型”、“Logistic回归模型”及“Logit模型”的称谓相互通用,来指同一个模型,唯一的区别是形式有所不同:logistic回归是直接估计概率,而logit模型对概率做了Logit转换。不过,SPSS软件好像将以分类自变量构成的模型称为Logit模型,而将既有分类自变量又有连续自变量的模型称为Logistic回归模型。至于是二元还是多元,关键是看因变量类别的多少,多元是二元的扩展。其次,当因变量是名义变量时,Logit和Probit没有本质的区别,一般情况下可以换用。区别在于采用的分布函数不同,前者假设随机变量服从逻辑概率分布,而后者假设随机变量服从正态分布。其实,这两种分布函数的公式很相似,函数值相差也并不大,唯一的区别在于逻辑概率分布函数的尾巴比正态分布粗一些。但是,如果因变量是序次变量,回归时只能用有序Probit模型。有序Probit可以看作是Probit的扩展
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)