怎样用微积分知识计算曲线的面积与周长?

怎样用微积分知识计算曲线的面积与周长?,第1张

(1)积分的基本公式共有四大公式:
1牛顿-莱布尼茨公式,又称为微积分基本公式
2格林公式,把封闭的曲线积分化为区域内的二重积分,它是平面向量场散度的二重积分
3高斯公式,把曲面积分化为区域内的三重积分,它是平面向量场散度的三重积分
4斯托克斯公式,与旋度有关
(2)微积分常用公式:
Dx sin x=cos x
cos x = -sin x
tan x = sec2 x
cot x = -csc2 x
sec x = sec x tan x
csc x = -csc x cot x
sin x dx = -cos x + C
cos x dx = sin x + C
tan x dx = ln |sec x | + C
cot x dx = ln |sin x | + C
sec x dx = ln |sec x + tan x | + C
csc x dx = ln |csc x - cot x | + C
sin-1(-x) = -sin-1 x
cos-1(-x) = - cos-1 x
tan-1(-x) = -tan-1 x
cot-1(-x) = - cot-1 x
sec-1(-x) = - sec-1 x
csc-1(-x) = - csc-1 x
Dx sin-1 ()=
cos-1 ()=
tan-1 ()=
cot-1 ()=
sec-1 ()=
csc-1 (x/a)=
sin-1 x dx = x sin-1 x++C
cos-1 x dx = x cos-1 x-+C
tan-1 x dx = x tan-1 x- ln (1+x2)+C
cot-1 x dx = x cot-1 x+ ln (1+x2)+C
sec-1 x dx = x sec-1 x- ln |x+|+C
csc-1 x dx = x csc-1 x+ ln |x+|+C
sinh-1 ()= ln (x+) xR
cosh-1 ()=ln (x+) x≥1
tanh-1 ()=ln () |x| 1
sech-1()=ln(+)0≤x≤1
csch-1 ()=ln(+) |x| >0
Dx sinh x = cosh x
cosh x = sinh x
tanh x = sech2 x
coth x = -csch2 x
sech x = -sech x tanh x
csch x = -csch x coth x
sinh x dx = cosh x + C
cosh x dx = sinh x + C
tanh x dx = ln | cosh x |+ C
coth x dx = ln | sinh x | + C
sech x dx = -2tan-1 (e-x) + C
csch x dx = 2 ln || + C
duv = udv + vdu
duv = uv = udv + vdu
→ udv = uv - vdu
cos2θ-sin2θ=cos2θ
cos2θ+ sin2θ=1
cosh2θ-sinh2θ=1
cosh2θ+sinh2θ=cosh2θ
Dx sinh-1()=
cosh-1()=
tanh-1()=
coth-1()=
sech-1()=
csch-1(x/a)=
sinh-1 x dx = x sinh-1 x-+ C
cosh-1 x dx = x cosh-1 x-+ C
tanh-1 x dx = x tanh-1 x+ ln | 1-x2|+ C
coth-1 x dx = x coth-1 x- ln | 1-x2|+ C
sech-1 x dx = x sech-1 x- sin-1 x + C
csch-1 x dx = x csch-1 x+ sinh-1 x + C
sin 3θ=3sinθ-4sin3θ
cos3θ=4cos3θ-3cosθ
→sin3θ= (3sinθ-sin3θ)
→cos3θ= (3cosθ+cos3θ)
sin x = cos x =
sinh x = cosh x =
正弦定理:= ==2R
余弦定理:a2=b2+c2-2bc cosα
b2=a2+c2-2ac cosβ
c2=a2+b2-2ab cosγ
sin (α±β)=sin α cos β ± cos α sin β
cos (α±β)=cos α cos β sin α sin β
2 sin α cos β = sin (α+β) + sin (α-β)
2 cos α sin β = sin (α+β) - sin (α-β)
2 cos α cos β = cos (α-β) + cos (α+β)
2 sin α sin β = cos (α-β) - cos (α+β)
sin α + sin β = 2 sin (α+β) cos (α-β)
sin α - sin β = 2 cos (α+β) sin (α-β)
cos α + cos β = 2 cos (α+β) cos (α-β)
cos α - cos β = -2 sin (α+β) sin (α-β)
tan (α±β)=,cot (α±β)=
ex=1+x+++…++ …
sin x = x-+-+…++ …
cos x = 1-+-+++
ln (1+x) = x-+-+++
tan-1 x = x-+-+++
(1+x)r =1+rx+x2+x3+ -1= n
= n (n+1)
= n (n+1)(2n+1)
= [ n (n+1)]2
Γ(x) = x-1e-t dt = 22x-1dt = x-1 dt
β(m,n) =m-1(1-x)n-1 dx=22m-1x cos2n-1x dx = dx

设(t,t^2+1)为曲线段y=x^2+1上的点,
(1)求出由该曲线与曲线在此点处的切线,以及x=0,x=a所围成的面积A(t)
用定积分求解
对x求微分有:dy/dx=2x
所以所求切线得斜率是2t,
所以切线方程用点斜式得:y=2t(x-t)+t^2+1
整理得:2tx-y-t^2+1=0
又由微积分得定义可知要求的面积
a
A(t)=∫0(x^2+1)dx
a a
=∫0x^2dx+∫0dx
a a
=[1/3x^3]0 + [x]0
=1/3a^3+a
所以A(t)=1/3a^3 +a

t:0→2π
ds=√[(dx/dt)²+(dy/dt)²]
dt=√[a²(1-cost)²+a²sin²t]
dt=a√(2-2cost)dt=a√[4sin²(t/2)]dt=2asin(t/2)dt

y
ds
=∫[0→2π]
2a²(1-cost)sin(t/2)
dt
=4a²∫[0→2π]
sin³(t/2)
dt
=8a²∫[0→2π]
sin³(t/2)
d(t/2)
=-8a²∫[0→2π]
sin²(t/2)
d[cos(t/2)]
=-8a²∫[0→2π]
[1-cos²(t/2)]
d[cos(t/2)]
=-8a²[cos(t/2)
-
(1/3)cos³(t/2)]
|[0→2π]
=-8a²(-1
-
1/3
-
1
-
1/3)
=32a²/3
数学之美团队为您解答,若有不懂请追问,如果解决问题请点下面的“选为满意答案”。

柱面由于展开是一个矩形,宽是h,长是底面轨迹。所以他的面积可以用高h沿着底面轨迹s(本题中就是那个圆x^2+y^2=a^2)积分来求。。这个题目中的高应该是h=|z1-z2|=2|x|
然后把圆的参数x=acosθ,y=asinθ带入。ds=√[(x'θ)^2+(y'θ)^2] dθ=adθ
所以S=∫hds=∫(2|x|)ds=2a^2∫(0->2π) |cosθ| dθ=8a^2


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12814196.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-28
下一篇 2023-05-28

发表评论

登录后才能评论

评论列表(0条)

保存