椭圆的计算公式

椭圆的计算公式,第1张

S=π(圆周率)×a×b(其中a,b分别是椭圆的半长轴,半短轴的长),或S=π(圆周zhi率)×A×B/4(其中A,B分别是椭圆的长轴,短轴的长)。

椭圆周长计算公式:L=T(r+R)。

T为椭圆系数,可以由r/R的值,查表找出系数T值;r为椭圆短半径;R为椭圆长半径。

椭圆周长定理:椭圆的周长等于该椭圆短半径与长半径之和与该椭圆系数的积(包括正圆)。

关于椭圆的周长等于特定的正弦曲线在一个周期内的长度的证明:

半径为r的圆柱上与一斜平面相交得到一椭圆,该斜平面与水平面的夹角为α,截取一个过椭圆短径的圆。以该圆和椭圆的某一交点为起始转过一个θ角。则椭圆上的点与圆上垂直对应的点的高度可以得到f(c)=r tanα sin(c/r)。

r:圆柱半径;

α:椭圆所在面与水平面的角度;

c:对应的弧长(从某一个交点起往某一个方向移动);

以上为证明简要过程,则椭圆(xcosα)^2+y^2=r^2的周长与f(c)=r tanα sin(c/r)的正弦曲线在一个周期内的长度是相等的,而一个周期T=2πr,正好为一个圆的周长。

扩展资料:

椭圆是围绕两个焦点的平面中的曲线,使得对于曲线上的每个点,到两个焦点的距离之和是恒定的。

因此,它是圆的概括,其是具有两个焦点在相同位置处的特殊类型的椭圆。椭圆的形状(如何“伸长”)由其偏心度表示,对于椭圆可以是从0(圆的极限情况)到任意接近但小于1的任何数字。

椭圆是封闭式圆锥截面:由锥体与平面相交的平面曲线。椭圆与其他两种形式的圆锥截面有很多相似之处:抛物线和双曲线,两者都是开放的和无界的。圆柱体的横截面为椭圆形,除非该截面平行于圆柱体的轴线。

椭圆也可以被定义为一组点,使得曲线上的每个点的距离与给定点(称为焦点)的距离与曲线上的相同点的距离的比值给定行(称为directrix)是一个常数。该比率称为椭圆的偏心率。

也可以这样定义椭圆,椭圆是点的集合,点其到两个焦点的距离的和是固定数。

参考资料:

百度百科-椭圆

用椭圆的一种定义,椭圆上的点到焦点的距离与到准线的距离的比为e(e为离心率,0<e<1)
设原点为右焦点,椭圆上的点到焦点的距离是t,椭圆上的点与焦点及x轴正方向成的角是α,准线是x=m,离心率e,
所以
t=(m-tcosα)e
其中t、α为未知数,m为常数、e为已知的离心率
整理得
t=me/(1+ecosα)
微分dα的弧长是
tdα
α角的弧长为
定积分∫me/(1+ecosα)dα
(上限α,下限0)
定积分怎么做现在都忘了,自己去想想把!
定积分解出来就是椭圆弧长关于α角的方程了

弧长积分公式:
一般方程:s=∫√(1+y'^2)dx
参数方程x=x(t),y=y(t):s=∫(√[x'(t)^2+y'(t)^2])dt
1)对曲线y=sinx,x∈[0,2π],y'=cosx
由于正弦曲线的对称性,可先求其弧长的1/4,即s/4,x∈[0,π/2]
∴s/4=∫(0,π/2)√(1+(cosx)^2)dx
2)对椭圆x^2+2y^2=2,即x^2/2+y^2=1
可变换为参数方程:x=x(t)=acost=√2cost,y=y(t)=bsint=sint,t∈[0,2π]
则有x'(t)=-√2sint,y'(t)=cost
由椭圆的对称性,也可先求其周长的1/4,即l/4,t∈[0,π/2]
l/4=∫(0,π/2)√[(-√2sint)^2+(cost)^2]dt
=∫(0,π/2)√[2(sint)^2+(cost)^2]dt
=∫(0,π/2)√[1+(sint)^2]dt
这两个式子积分出来的s和l的结果应该不相等,楼主的椭圆方程是否有问题?
如果把椭圆方程换成2x^2+y^2=2,则s和l的结果相同。
大家可以仔细讨论验算一下,看看我的计算是否有误。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12827481.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-28
下一篇 2023-05-28

发表评论

登录后才能评论

评论列表(0条)

保存