2、一般来说,相对误差更能反映测量的可信程度。
3、设测量结果y减去被测量约定真值t,所得的误差或绝对误差为Δ。
4、将绝对误差Δ除以约定真值t即可求得相对误差。
5、相对误差= 绝对误差÷真值。
6、为绝对误差与真值的比值(可以用百分比、千分比、百万分比表示,但常以百分比表示)。
7、一般来说,相对误差更能反映测量的可信程度。
8、
扩展资料:
9、相对误差是指“测量的绝对误差与被测量的真值之比”,即该误差相当于测量的绝对误差占真值(或给出值)的百分比或用数量级表示,它是一个无量纲的值。
10、有的计量器具从实际使用的需要出发,为了确定其准确度或允许误差,往往用引用误差和分贝误差来表示。
11、引用误差是指绝对误差与特定值(测量范围上限值或量程)之比,值以百分数表示,它是相对误差的另一种表达形式。
12、分贝误差是无线电、声学等计量器具中经常用来表示相对误差的一种表达形式。
13、将上述归纳起来就是相对误差的类别:①实际相对误差;②给出值相对误差;③引用误差;④分贝误差。
14、二、原理:测量所造成的绝对误差与被测量〔约定〕真值之比。
15、乘以100%所得的数值,以百分数表示。
16、约定真值:对于硬度等量,则用其约定参考标尺上的值作为约定真值。
17、实际相对误差定义式为δ=△/Lx100%式中:δ—实际相对误差,一般用百分数给出△—绝对误差、L—真值。
18、一个近似数与它准确数的差的绝对值叫这个近似数的绝对误差。
19、用a表示近似数,A表示它的准确数,那么近似数a的相对误差就是|a-A|/A。
20、另外,由于测量值的真值是不可知的,因此其相对误差也是无法准确获知的,我们提到相对误差时,指的一般是相对误差限,即相对误差可能取得的最大值(上限)。
21、测量值的测量误差的绝对值与相应测量值的比值。
22、为量纲为一的量,通常用分子为1的分数表示,常用于描述线量的精度。
23、在描述线量(长度或仅与长度有关的物理量,如长度、面积、体积等)的精度时,既要考虑线量的误差的大小,还应顾及线量本身的大小。
24、例如,测量者用同一把尺子测量长度为1厘米和10厘米的物体,它们的测量值的绝对误差显然是相同的,但是相对误差前者比后者大了一个数量级,表明后者测量值更为可信。
25、指绝对误差在真实值中所占的百分率。根据球面三角形的勾股定理:cosα=cosβcosγ
设:R=地球半径,β=两地经度差,γ=两地纬度差
则两地距离=Rarccos(cosβcosγ)
由于地球不圆
R不是常数
结果必然与实际不符
这不是计算公式造成的
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)