手机计算器2ndf键在哪 等同于INV键

手机计算器2ndf键在哪 等同于INV键,第1张

1、2ndF的全称是“second function”,译为“第二功能”,可以分开理解——2nd是“二”的序数词表示方法,即“second”(第二),大写“F”代表“function”,意思是功能。

2、2nd F也不一定就写做 2nd F,可能就是写成“F”或者“Func”、“Function”。

3、第二功能键一般是基础键的另一种模式,计算器在制作过程中,为了优化布局,把功能相近的按键合并在一起,此时第二功能键(即“2ndF”键)就起到作用了。

4、比如:原键是sin,功能是求正弦值,而按第二功能键的作用是求其arcsin值(一些计算器标注的是sin^-1),即已知三角函数数值,求其角度(或弧度)值。不过不同的计算器,其2ndF键的功能也可能有一些差异。

5、2ndF键在计算器中等同于shift键,在手机中的科学计算器通常会用INV键代替,因此INV键等同于2ndf键。

6、INV的意义;设置“sin”、“cos”、“tan”、“PI”、“x^y”、“x^2”、“x^3”、“ln”、“log”、“Ave”、“Sum”和“s”的反函数。完成一次计算后自动关闭反函数功能。

要理解复合函数,先要知道基本初等函数的概念:

一般来讲,基本初等函数归为以下五类:

幂函数:f(x)=xᵃ(a为有理数);

指数函数:f(x)=aˣ(a>0且a≠1);

对数函数:f(x)=logₐ(x)(a>0且a≠1);

三角函数:f(x)=sin(x)、f(x)=cos(x)

反三角函数:f(x)=arcsin(x)、f(x)=arccos(x)

复合函数通俗地说就是函数套函数,是把上述几种基本初等函数的函数复合为一个较为复杂的函数。复合函数中含有两个及以上的函数,如y=sin(u),u=2ᵛ,v=x²,则函数y=sin[2^(x²)]就是y关于x的复合函数,其中x是自变量,u、v都是中间变量,y是应变量。

不是任何两个函数放在一起都能构成一个复合函数,复合的过程中要掌握一个原则:内层函数的值域要在其外层函数的定义域内,由内到外,逐层满足,如y=log₂[1-cos(x)]没问题,但y=log₂[cos(x)-2]就不行,显然没有任何x能使y有意义,故求复合函数的定义域时,要综合考虑各部分的x的取值范围,最后取他们的交集,还是以y=log₂[1-cos(x)]为例:内层cos(x):定义域x∈R;外层log₂[u]:u>0→1-cos(x)>0→函数的定义域x≠2kπ。

复合函数的性质:

周期性:复合函数的最小正周期为内外层函数最小正周期的最小公倍数,如tan[sin(x)]的最小正周期为2π

单调(增减)性

依内外层的单调性来决定:即“增+增=增;减+减=增;增+减=减;减+增=减”,可以简化为口诀“同增异减”。如y=ln(x²):

外层为增函数,内层x<0时为减函数,x>0时为增函数,故复合后:

x<0时,内外层增减性相异→复合后为减函数;

x>0时,内外层增减性相同→复合后为增函数;

圆锥拆开是扇形。
因为母线相等,所以扇形的半径一样。
侧面积就是扇形的面积,比是1:2
那么扇形的度数比为1:2
加起来是个圆,所以一个度数是120°,一个是240°。
第一个圆锥,母线是r,则底的周长是2/3πr,而底面是圆,所以底圆半径是1/3r,则圆锥锥角的一半是arcsin(1/3),则锥角为2arcsin(1/3),
第二个圆锥同理2arcsin(2/3)

不可以,因为按定积分计算的话,算出来的是一个数,无法与2/3和1/√2进行比较,不信给你算一下

而答案的思路是利用定积分的性质来证明的,即

不过本题是取了倒数,即先计算分母的范围

同角三角函数的基本关系
倒数关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系: sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系: sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α)
平常针对不同条件的常用的两个公式
sin² α+cos² α=1 tan α cot α=1
一个特殊公式
(sina+sinθ)(sina+sinθ)=sin(a+θ)sin(a-θ) 证明:(sina+sinθ)(sina+sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] 2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)sin(a-θ)
锐角三角函数公式
正弦: sin α=∠α的对边/∠α 的斜边 余弦:cos α=∠α的邻边/∠α的斜边 正切:tan α=∠α的对边/∠α的邻边 余切:cot α=∠α的邻边/∠α的对边
二倍角公式
正弦 sin2A=2sinA·cosA 余弦 1Cos2a=Cos^2(a)-Sin^2(a) =2Cos^2(a)-1 =1-2Sin^2(a) 2Cos2a=1-2Sin^2(a) 3Cos2a=2Cos^2(a)-1 正切 tan2A=(2tanA)/(1-tan^2(A))
三倍角公式

sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导 sin(3a) =sin(a+2a) =sin2acosa+cos2asina =2sina(1-sin²a)+(1-2sin²a)sina =3sina-4sin^3a cos3a =cos(2a+a) =cos2acosa-sin2asina =(2cos²a-1)cosa-2(1-cos^a)cosa =4cos^3a-3cosa sin3a=3sina-4sin^3a =4sina(3/4-sin²a) =4sina[(√3/2)²-sin²a] =4sina(sin²60°-sin²a) =4sina(sin60°+sina)(sin60°-sina) =4sina2sin[(60+a)/2]cos[(60°-a)/2]2sin[(60°-a)/2]cos[(60°-a)/2] =4sinasin(60°+a)sin(60°-a) cos3a=4cos^3a-3cosa =4cosa(cos²a-3/4) =4cosa[cos²a-(√3/2)^2] =4cosa(cos²a-cos²30°) =4cosa(cosa+cos30°)(cosa-cos30°) =4cosa2cos[(a+30°)/2]cos[(a-30°)/2]{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°) =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)] =-4cosacos(60°-a)[-cos(60°+a)] =4cosacos(60°-a)cos(60°+a) 上述两式相比可得 tan3a=tanatan(60°-a)tan(60°+a)
n倍角公式
sin(n a)=Rsina sin(a+π/n)……sin(a+(n-1)π/n)。 其中R=2^(n-1) 证明:当sin(na)=0时,sina=sin(π/n)或=sin(2π/n)或=sin(3π/n)或=……或=sin(n-1)π/n 这说明sin(na)=0与{sina-sin(π/n)}{sina-sin(2π/n)}{sina-sin(3π/n)}……{sina- sin(n-1)π/n=0是同解方程。 所以sin(na)与{sina-sin(π/n)}{sina-sin(2π/n)}{sina-sin(3π/n)}……{sina- sin(n-1)π/n成正比。 而(sina+sinθ)(sina+sinθ)=sin(a+θ)sin(a-θ),所以 {sina-sin(π/n)}{sina-sin(2π/n)}{sina-sin(3π/n)}……{sina- sin(n-1π/n 与sina sin(a+π/n)……sin(a+(n-1)π/n)成正比(系数与n有关 ,但与a无关,记为Rn)。 然后考虑sin(2n a)的系数为R2n=R2(Rn)^2=Rn(R2)^n易证R2=2,所以Rn= 2^(n-1)
半角公式
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA); cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA sin^2(a/2)=(1-cos(a))/2 cos^2(a/2)=(1+cos(a))/2 tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
和差化积
sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]
sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2] cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2] cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2] tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)
两角和公式
cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβsin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ -cosαsinβ
积化和差
sinαsinβ = [cos(α-β)-cos(α+β)] /2 cosαcosβ = [cos(α+β)+cos(α-β)]/2 sinαcosβ = [sin(α+β)+sin(α-β)]/2 cosαsinβ = [sin(α+β)-sin(α-β)]/2
双曲函数
sinh(a) = [e^a-e^(-a)]/2 cosh(a) = [e^a+e^(-a)]/2 tanh(a) = sin h(a)/cos h(a) 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)= sinα cos(2kπ+α)= cosα tan(2kπ+α)= tanα cot(2kπ+α)= cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα cot(π+α)= cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)= -sinα cos(-α)= cosα tan(-α)= -tanα cot(-α)= -cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα cot(π-α)= -cotα 公式五: 利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα cot(2π-α)= -cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)= cosα cos(π/2+α)= -sinα tan(π/2+α)= -cotα cot(π/2+α)= -tanα sin(π/2-α)= cosα cos(π/2-α)= sinα tan(π/2-α)= cotα cot(π/2-α)= tanα sin(3π/2+α)= -cosα cos(3π/2+α)= sinα tan(3π/2+α)= -cotα cot(3π/2+α)= -tanα sin(3π/2-α)= -cosα cos(3π/2-α)= -sinα tan(3π/2-α)= cotα cot(3π/2-α)= tanα (以上k∈Z) A·sin(ωt+θ)+ B·sin(ωt+φ) = √{(A² +B² +2ABcos(θ-φ)} · sin{ ωt + arcsin[ (A·sinθ+B·sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} } √表示根号,包括{……}中的内容
诱导公式
sin(-α) = -sinα cos(-α) = cosα tan (-α)=-tanα sin(π/2-α) = cosα cos(π/2-α) = sinα sin(π/2+α) = cosα cos(π/2+α) = -sinα sin(π-α) = sinα cos(π-α) = -cosα sin(π+α) = -sinα cos(π+α) = -cosα tanA= sinA/cosA tan(π/2+α)=-cotα tan(π/2-α)=cotα tan(π-α)=-tanα tan(π+α)=tanα 诱导公式记背诀窍:奇变偶不变,符号看象限
万能公式
sinα=2tan(α/2)/[1+(tan(α/2))²] cosα=[1-(tan(α/2))²]/[1+(tan(α/2))²] tanα=2tan(α/2)/[1-(tan(α/2))²]
其它公式

(1) (sinα)²+(cosα)²=1 (2)1+(tanα)²=(secα)² (3)1+(cotα)²=(cscα)² 证明下面两式,只需将一式,左右同除(sinα)²,第二个除(cosα)²即可 (4)对于任意非直角三角形,总有 tanA+tanB+tanC=tanAtanBtanC 证: A+B=π-C tan(A+B)=tan(π-C) (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC) 整理可得 tanA+tanB+tanC=tanAtanBtanC 得证 同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立 由tanA+tanB+tanC=tanAtanBtanC可得出以下结论 (5)cotAcotB+cotAcotC+cotBcotC=1 (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2) (7)(cosA)²+(cosB)²+(cosC)²=1-2cosAcosBcosC (8)(sinA)²+(sinB)²+(sinC)²=2+2cosAcosBcosC 其他非重点三角函数 csc(a) = 1/sin(a) sec(a) = 1/cos(a)

编辑本段内容规律
三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在 1、三角函数本质:
[1] 根据右图,有 sinθ=y/ r; cosθ=x/r; tanθ=y/x; cotθ=x/y。 深刻理解了这一点,下面所有的三角公式都可以从这里出发推导出来,比如以推导 sin(A+B) = sinAcosB+cosAsinB 为例: 推导: 首先画单位圆交X轴于C,D,在单位圆上有任意A,B点。角AOD为α,BOD为β,旋转AOB使OB与OD重合,形成新A'OD。 A(cosα,sinα),B(cosβ,sinβ),A'(cos(α-β),sin(α-β)) OA'=OA=OB=OD=1,D(1,0) ∴[cos(α-β)-1]^2+[sin(α-β)]^2=(cosα-cosβ)^2+(sinα-sinβ)^2 和差化积及积化和差用还原法结合上面公式可推出(换(a+b)/2与(a-b)/2) 单位圆定义 单位圆 六个三角函数也可以依据半径为一中心为原点的单位圆来定义。单位圆定义在实际计算上没有大的价值;实际上对多数角它都依赖于直角三角形。但是单位圆定义的确允许三角函数对所有正数和负数辐角都有定义,而不只是对于在 0 和 π/2 弧度之间的角。它也提供了一个图象,把所有重要的三角函数都包含了。根据勾股定理,单位圆的等式是: 图象中给出了用弧度度量的一些常见的角。逆时针方向的度量是正角,而顺时针的度量是负角。设一个过原点的线,同 x 轴正半部分得到一个角 θ,并与单位圆相交。这个交点的 x 和 y 坐标分别等于 cos θ 和 sin θ。图象中的三角形确保了这个公式;半径等于斜边且长度为1,所以有 sin θ = y/1 和 cos θ = x/1。单位圆可以被视为是通过改变邻边和对边的长度,但保持斜边等于 1的一种查看无限个三角形的方式。 两角和公式
sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA)


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12839843.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-28
下一篇 2023-05-28

发表评论

登录后才能评论

评论列表(0条)

保存