总体标准差=√ {∫[-∞→+∞] (x-E(X))²f(x) dx} f(x)是总体的概率密度,E(X)是总体的期望。
样本的标准差是用数据算出来的,只要有测量数据就可以计算,而总体的标准差要通过概率密度才能求出来,一般是做不到的,因为在数理统计中,总体的分布一般是未知的。
样本的标准差是总体标准差的近似。
方差公式:S^2=〈(M-x1)^2+(M-x2)^2+(M-x3)^2+…+(M-xn)^2〉╱n。
标准差公式:样本标准差=方差的算术平方根=s=sqrt(((x1-x)²+(x2-x)²+……(xn-x)²)/(n-1))。总体标准差=σ=sqrt(((x1-x)²+(x2-x)²+……(xn-x)²)/n)。
标准差详解及示例:
标准差是一组数值自平均值分散开来的程度的一种测量观念。一个较大的标准差,代表大部分的数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。
例如,两组数的集合{0,5,9,14}和{5,6,8,9}其平均值都是7,但第二个集合具有较小的标准差。
方差是各个数据与平均数之差的平方的和的平均数,公式为:
其中,x表示样本的平均数,n表示样本的数量,xi表示个体,而s^2就表示方差。
平方差:a²-b²=(a+b)(a-b)。文字表达式:两个数的和与这两个数的差的积等于这两个数的平方差。此即平方差公式
标准差:标准差=sqrt(((x1-x)^2 +(x2-x)^2 +(xn-x)^2)/n)。是离均差平方的算术平均数的平方根,用σ表示。在概率统计中最常使用作为统计分布程度上的测量。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。
扩展资料:
方差和标准差是测算离散趋势最重要、最常用的指标。方差是各变量值与其均值离差平方的平均数,它是测算数值型数据离散程度的最重要的方法。标准差为方差的算术平方根,用S表示。
标准差可以当作不确定性的一种测量。例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远,则认为测量值与预测值互相矛盾。
参考资料来源:百度百科——方差
参考资料来源:百度百科——平方差
参考资料来源:百度百科——标准差
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)