如何推导并联maxwell模型的运动方程

如何推导并联maxwell模型的运动方程,第1张

聚合物作为材料使用时,对它性质的要求最重要的还是力学性质。比如作为纤维要经得起拉力;作为塑料制品要经得起敲击;作为橡胶要富有d性和耐磨损等等。聚合物的力学性质,主要是研究其在受力作用下的形变,即应力-应变关系。
731应力-应变曲线
7311什么是应力和应变
当材料在外力作用下,而材料不能产生位移时,它的几何形状和尺寸将发生变化,这种形变称为应变。材料发生形变时内部产生了大小相等但方向相反的反作用力抵抗外力,定义单位面积上的这种反作用力为应力。
材料受力方式不同,形变方式也不同。常见的应力和应变有:
(1)张应力、张应变和拉伸模量
材料受简单拉伸时(图7-34),张应力:
张应变(又称伸长率):
拉伸模量(又称杨氏模量):
(2)(剪)切应力、(剪)切应变和剪切模量
应力方向平行于受力平面,如图7-35所示。
切应力 切应变
剪切模量
还有一个材料常数称泊松(Poisson)比,定义为在拉伸试验中,材料横向单位宽度的减小与纵向单位长度的增加的比值 (注:加负号是因为Δm为负值)
可以证明没有体积变化时,υ=05,橡胶拉伸时就是这种情况。其他材料拉伸时,υ<05υ与E和G之间有如下关系式:
因为0<υ≤05,所以2GG,即拉伸比剪切困难,这是因为在拉伸时高分子链要断键,需要较大的力;剪切时是层间错动,较容易实现。
7312强度
极限强度是材料抵抗外力破坏能力的量度,不同形式的破环力对应于不同意义的强度指标。极限强度在实用中有重要意义。
(1)抗张强度
在规定的试验温度、湿度和试验速度下,在标准试样(通常为哑铃形,见图7-36)上沿轴向施加载荷直至拉断为止。抗张强度定义为断裂前试样承受的最大载荷P与试样的宽度b和厚度d的乘积的比值。
抗张强度
(2)冲击强度
是衡量材料韧性的一种强度指标。定义为试样受冲击载荷而折断时单位截面积所吸收的能量。
冲击强度
式中:W为冲断试样所消耗的功;b为试样宽度;d为试样厚度。有简支梁(Charpy)和悬臂梁(Izod)两种冲击方式。前者试样两端支承,摆锤冲击试样的中部(图7-37);后者试样一端固定,摆锤冲击自由端。试样可用带缺口和不带缺口两种,带缺口试样更易冲断,其厚度d指缺口处剩余厚度(图7-37上部)。
根据材料的室温(20℃)冲击强度,可以将聚合物分为三类:
脆性:聚苯乙烯、聚甲基丙烯酸甲酯;
缺口脆性:聚丙烯、聚氯乙烯(硬)、尼龙(干)、高密度聚乙烯、聚苯醚、聚对苯二甲酸乙二醇酯、聚砜、聚甲醛、纤维素酯、ABS(某些)、聚碳酸酯(某些);
韧性:低密度聚乙烯、聚四氟乙烯、尼龙(湿)、ABS(某些)、聚碳酸酯(某些)。
(3)硬度
硬度是材料抵抗机械压力的一项指标。硬度实验方法很多,采用的压入头及方式不同,计算公式也不同。布氏硬度是常用的一种(图7-38),将钢球压入试样表面并保持规定时间。计算公式为:
布氏硬度=
式中:f为载荷(Kg);D为钢球直径(mm);h为压痕深度(mm);d为压痕直径(mm)。
7313玻璃态聚合物拉伸时的应力-应变曲线
玻璃态聚合物在拉伸时典型的应力-应变关系示于图7-39。应力-应变曲线可以分为五个阶段。
(1)d性形变 在Y点之前应力随应变正比地增加,从直线的斜率可以求出杨氏模量E。从分子机理看来,这一阶段的普d性行为主要是由于高分子的键长键角变化引起的。
(2)屈服应力 应力在Y点达到极大值,这一点叫屈服点,其应力σy为屈服应力。
(3)强迫高d形变(又称大形变) 过了Y点应力反而降低,这是由于此时在大的外力帮助下,玻璃态聚合物本来被冻结的链段开始运动,高分子链的伸展提供了材料的大的形变。这种运动本质上与橡胶的高d形变一样,只不过是在外力作用下发生的,为了与普通的高d形变相区别,通常称为强迫高d形变。这一阶段加热可以恢复。
(4)应变硬化 继续拉伸时,由于分子链取向排列,使硬度提高,从而需要更大的力才能形变。
(5)断裂 达到B点时材料断裂,断裂时的应力σb即是抗张强度σt;断裂时的应变εb又称为断裂伸长率。直至断裂,整条曲线所包围的面积S相当于断裂功。
因而从应力-应变曲线上可以得到以下重要力学指标。E越大,说明材料越硬,相反则越软;σb或σy越大,说材料越强,相反则越弱;εb或S越大,说明材料越韧,相反则越脆。
实际聚合物材料,通常只是上述应力-应变曲线的一部分或其变异,图7-40示出五类典型的聚合物应力-应变曲线,他们的特点分别是:软而弱、硬而脆、硬而强、软而韧和硬而韧。其代表性聚合物是:
软而弱――聚合物凝胶
硬而脆――聚苯乙烯、聚甲基丙烯酸甲酯、酚醛塑料
硬而强――硬聚氯乙稀
软而韧――橡胶、增塑聚氯乙稀、聚乙烯、聚四氟乙烯
硬而韧――尼龙、聚碳酸酯、聚丙烯、醋酸纤维素
7314结晶态聚合物拉伸时的应力-应变曲线
图7-41为晶态聚合物拉伸时的应力-应变曲线,也同样经历了五个阶段。除了E和σt都较大外,其主要特点是细颈化和冷拉。所谓“细颈化”是指试样在一处或几处薄弱环节首先变细,此后细颈部分不断扩展,非细颈部分逐渐缩短,直至整个试样变细为止。这一阶段应力不变,应变可达500%以上。由于是在较低温度下出现的不均匀拉伸(注:玻璃态聚合物试样在拉伸时横截面是均匀收缩的),所以又称为“冷拉”。
细颈化和冷拉的产生原因是结晶形态的变化,在d性形变阶段球晶只是发生仿射形变(即球晶的伸长率与试样伸长率相同)成为椭球形,继而在球晶的薄弱环节处发生破坏,组成球晶的晶片被拉出来,分子链发生重排,取向和再结晶成纤维状晶(图7-42)。这一阶段如同毛线从线团中不断被抽出,无需多少力,所以应力维持不变。
7315影响聚合物强度的结构因素和增强增韧途径
聚合物断裂的机理是首先局部范德华力或氢键力等分子间作用力被破坏,然后应力集中在取向的主链上,使这些主链的共价键断裂。因而聚合物的强度上限取决于主链化学键力和分子链间作用力。一般情况下,增加分子间作用力如增加极性或氢键可以提高强度。例如高密度聚乙烯的抗张强度只有22~38MPa,聚氯乙烯因有极性基团,抗张强度为49MPa,尼龙66有氢键,抗张强度为81MPa。
主链有芳环,其强度和模量都提高,例如芳香尼龙高于普通尼龙,聚苯醚高于族聚醚等。实际上工程塑料大都在主链上含有芳环。
支化使分子间距离增加,分子间作用力减少,因而抗张强度降低;但交联增加了分子链间的联系,使分子链不易滑移,抗张强度提高;结晶起了物理交联的作用,与交联的作用类似;取向使分子链平行排列,断裂时破坏主链化学键的比例大大增加,从而强度大为提高,因而拉伸取向是提高聚合物强度的主要途径。
分子量越大,强度越高。因为分子量较小时,分子间作用力较小,在外力作用下,分子间会产生滑动而使材料开裂。但当分子量足够大时,分子间的作用力总和大于主链化学链力,材料更多地发生主价键的断裂,也就是说达到临界值后,抗张强度达到恒定值(但冲击强度不存在临界值)。
以上讨论主要是对于抗张强度,对于冲击强度,除了上述结构因素外,还与自由体积有关。总的来说,自由体积越大,冲击强度越高。结晶时体积收缩,自由体积减少,因而结晶度太高时材料变脆。支化使自由体积增加,因而冲击强度较高。
聚合物的增强除了根据上述原理改变结构外,还可以添加增强剂。增强剂主要是碳纤维,玻璃纤维等纤维状的物质,以及木粉、炭黑等活性填料。前者所形成的复合材料有很高的强度,例如玻璃纤维增强的环氧树脂的比强度超过了高级合金钢,所以又称为“环氧玻璃钢”。后者不同于一般只为了降低成本的增量型填料,例如在天然橡胶中加入20%的炭黑,抗张强度从150MPa提高到260MPa,这种作用称为对橡胶的补强作用。
如果脆性塑料中加入一些橡胶共混,可以达到提高冲击强度的效果,又称为增韧。增韧的机理是橡胶粒子作为应力集中物,在应力下会诱导大量银纹,从而吸收大量冲击能 。所谓银纹是PS、PMMA等聚合物在受力时会在垂直于应力方向上出现一些肉眼可见的小裂纹,由于光的散射和折射而闪闪发光,因而得名“银纹”(图7-43),银纹不等于裂缝,它还保留有 50%左右的密度,残留的分子链沿应力方向取向,所以它仍然有一定强度。在橡胶增韧塑料中银纹产生自一个橡胶粒子,又终止于另一个橡胶粒子,从而不发展成裂缝而导致断裂。
732 聚合物的力学松弛――粘d性
低分子的力学性质主要表现为d性和粘性。理想d性体的形变与时间无关,形变瞬时达到,瞬时恢复。理想粘性体的形变随时间线性发展。实际聚合物介于这良两者之间,其形变的发展具有时间依赖性,也就是说不仅具有d性而且有粘性(图7-44)。这种力学性质随时间变化的现象称为力学松弛现象或粘d性现象。广义上说,松弛过程是体系(始态)从受外场(力场、电场等)作用的瞬间开始,经过一系列非平衡态(中间状态)而过渡到与平衡态(终态)的过程,而这一过渡时间不是很短的。聚合物在低温或快速形变时表现为(普)d性,这时为玻璃态;在高温或缓慢形变时表现为粘性,这时为粘流态;在中等温度和中等速度形变时,表现为粘d性,这时为橡胶态。在玻璃化转变区,松弛(粘d)现象表现得最为明显。
粘d性现象主要包括蠕变、应力松弛两类静态力学行为和滞后、内耗两类动态力学行为。
7321静态粘d性现象
(1)蠕变
所谓蠕变,就是在一定温度和较小的恒定外力下,材料形变随时间而逐渐增大的现象。这种现象在日常生活中就能观察到,例如塑料雨衣挂在钉子上,由于自身重量作用会慢慢伸长,取下后不能完全恢复。
蠕变的简易测定方法如下:把PVC薄膜切成一长条,用夹具分别夹住两端。上端固定,下端挂上一定质量的砝码,就会观察到薄膜慢慢伸长;解下砝码后,薄膜会慢慢地回缩。记录形变与时间的关系,得到如图7-45所示的蠕变及其回复曲线。
从分子机理来看,蠕变包括三种形变:普d形变、高d形变和粘流。
① 普d形变
当t1时刻外力作用在高分子材料上时,分子链内部的键长、键角的改变是瞬间发生的,但形变量很小,叫普d形变,用ε1表示。t2时刻,外力除去后,普d形变能立刻完全回复(图7-46)。
② 高d形变
当外力作用时间和链段运动所需要的松弛时间同数量级时,分子链通过链段运动逐渐伸展,形变量比普d形变大得多,称高d形变,用ε2表示。外力除去后,高d形变能逐渐完全回复(图7-47)。
③ 粘流
对于线形聚合物,还会产生分子间的滑移,称为粘流,用ε3表示。外力除去后粘流产生的形变不可回复,是不可逆形变(图7-48)。
所以聚合物受外力时总形变可表达为
蠕变影响了材料的尺寸稳定性。例如,精密的机械零件必须采用蠕变小的工程塑料制造;相反聚四氟乙烯的蠕变性很大,利用这一特点可以用作很好的密封材料(即用于密封水管接口等的“生料带”)
(2)应力松弛
所谓应力松弛,就是在固定的温度和形变下,聚合物内部的应力随时间增加而逐渐衰减的现象。这种现象也在日常生活中能观察到,例如橡胶松紧带开始使用时感觉比较紧,用过一段时间后越来越松。也就是说,实现同样的形变量,所需的力越来越少。未交联的橡胶应力松弛较快,而且应力能完全松弛到零,但交联的橡胶,不能完全松弛到零。
线形聚合物的应力松弛的分子机理如图7-50所示,拉伸时张力迅速作用使缠绕的分子链伸长,但这种伸直的构象时不平衡的,由于热运动分子链会重新卷曲,但形变量被固定不变,于是链可能解缠结而转入新的无规卷曲的平衡态,于是应力松弛为零(图7-50)。交联聚合物不能解缠结,因而应力不能松弛到零。
应力松弛同样也有重要的实际意义。成型过程中总离不开应力,在固化成制品的过程中应力来不及完全松弛,或多或少会被冻结在制品内。这种残存的内应力在制品的存放和使用过程中会慢慢发生松弛,从而引起制品翘曲、变形甚至应力开裂。消除的办法时退火或溶胀(如纤维热定形时吹入水蒸汽)以加速应力松弛过程。
(3)粘d性的力学模型
为了模拟聚合物的粘d行为,采用两种基本力学元件,即理想d簧和理想粘壶(图7-51)。
理想d簧用于模拟普d形变,其力学性质符合虎克(Hooke)定律,应变达到平衡的时间很短,可以认为应力与应变和时间无关。σ= Eε
式中:σ为应力;E为d簧的模量。
理想粘壶用于模拟粘性形变,其应变对应于充满粘度为η的液体的圆筒同活塞的相对运动,可用牛顿流动定律描述其应力-应变关系。

将d簧和粘壶串联或并联起来可以表征粘d体的应力松弛或蠕变过程。
① 串联
如图7-52所示,当模型受到了一个外力时,d簧瞬时发生形变,而粘壶由于粘液阻碍跟不上作用速度而暂时保持原状。若此时把模型的两端固定,即模拟应力松弛中应变ε固定的情况,则接着发生的现象是,粘壶受d簧回缩力的作用,克服粘滞阻力而慢慢移开,因而也就把伸长的d簧慢慢放松,直至d簧完全恢复原形,总应力下降为零,而总应变仍保持不变。
串联模型又称Maxwell模型,其方程推导如下:
体系总应变是d簧和粘壶的应变之和ε=εd+ε粘
d簧与粘壶受的应力相同 σ=σd=σ粘
由虎克定律和牛顿定律可知

代入上式得
因为应力松弛过程中总应变固定不变,即 ,所以

当t=0时σ=σ0,所以有
由此得到Maxwell模型给出的应力松弛方程为:
式中: ,称为松弛时间。当t=τ时, ,所以τ表示形变固定时由于粘流使应力松弛到起始应力的1/e时所需要的时间。微观上是一个构象变化到另一个构象所需要的时间。
② 并联模型
当模型受到外力时,由于粘壶的粘性使得并联的d簧不能迅速被拉开。随着时间的发展,粘壶逐步形变,d簧也慢慢被拉开,最后停止在d簧的最大形变上。除去外力,由于d簧的回缩力,要使形变复原,但由于粘壶的粘性,使体系的形变不能立刻消除。粘壶慢慢移动,回复到最初未加外力的状态。整个过程与蠕变中的高d形变部分(图7-47)相似。
并联模型示意于图7-53。并联模型又称为Voigt模型,其模拟的蠕变方程为
蠕变回复方程为
③ 四元件模型
并联模型没能表现出蠕变过程刚开始的普d形变部分和与高d形变同时发生的纯粘流部分。串联模型能表现普d形变和粘流形变,但不能表现高d形变。如果将串联模型和并联模型再串联起来,构成的所谓“四元件模型”就能较全面地模拟线形聚合物的蠕变过程(图7-54)。
完整的蠕变方程为
理论曲线(图7-55)与实际曲线(图7-45)相当符合,可见模型是相当成功的。
④ 多元件模型
上述各种模型虽然都能表现出聚合物粘d性的基本特征,但都只给出一个松弛时间。也就是说只对应一种结构单元的松弛运动。实际聚合物是由多重结构单元组成的,其运动是相当复杂的,它的力学松弛过程不止一个松弛时间,而是一个分布很宽的连续的谱,称为松弛时间谱。因而须用多元件组合模型来模拟,例如用广义Maxwell模型来模拟应力松弛(图7-56),用广义Voigt模型来模拟蠕变(图7-57)。用不同的模量与粘度的力学元件来对应不同结构单元的松弛行为。
7322动态粘d性现象
(1)滞后现象
当外力不是静力,而是交变力(即应力大小呈周期性变化)时,应力和应变的关系就会呈现出滞后现象。所谓滞后现象,是指应变随时间的变化一直跟不上应力随时间的变化的现象。
例如,自行车行驶时橡胶轮胎的某一部分一会儿着地,一会儿离地,因而受到的是一个交变力(图7-58)。在这个交变力作用下,轮胎的形变也是一会儿大一会儿小的变化。形变总是落后于应力的变化,这种滞后现象的发生是由于链段在运动时要受到内摩擦力的作用。当外力变化时,链段的运动跟不上外力的变化,所以落后于应力,有一个相位差δ。相位差越大,说明链段运动越困难。
(2)力学损耗(内耗)
当应力与应变有相位差时,每一次循环变化过程中要消耗功,称为力学损耗或内耗。相位差δ又称为力学损耗角,人们常用力学损耗角的正切tanδ来表示内耗的大小。
从分子机理看,橡胶在受拉伸阶段外力对体系做的功,一方面改变链段构象,另一方面克服链段间的摩擦力。在回缩阶段体系对外做功,一方面使构象改变重新卷曲,另一方面仍需克服链段间的摩擦力。这样在橡胶的一次拉伸-回缩的循环中,链构象完全恢复,不损耗功,所损耗的功全用于克服内摩擦力,转化为热。内摩擦力越大,滞后现象越严重,消耗的功(内耗)也越大。所以橡胶轮胎行驶一段时间后会烫手。
Tg以下,聚合物受外力产生的形变是普d形变,形变速度很快,能跟得上应力的变化,所以内耗很小。Tg附近,聚合物的链段能运动,但体系的粘度还很大,链段运动时受到的摩擦阻力比较大,因此高d形变显著落后于应力的变化,内耗也大。所以在玻璃化转变区出现一个极大值,称为内耗峰,峰值对应于Tg(图7-59)。当温度进一步升高,链段运动比较自由,受到的摩擦阻力小,因此内耗也小,到达粘流态时,由于分子间互相滑移,内耗急剧增加。
内耗大小与聚合物结构有关。顺丁橡胶内耗小,因为它没有侧基,链段运动的内摩擦力较小;相反丁苯橡胶和丁腈橡胶内耗大,因为有庞大的苯基侧基或极性很强的氰基侧基。丁苯橡胶的侧基虽不大,极性也弱,但由于侧基数目非常多,所以内耗比丁苯橡胶和丁腈橡胶还大。
对于制作轮胎的橡胶来说,希望它具有最小的内耗。但用作吸音或消震材料来说,希望有较大的内耗,从而能吸收较多的冲击能量。
7323聚合物主要力学性质各参量之间的关系
前面我们讨论过形变-温度曲线、应力-应变曲线以及静态粘d性的蠕变和应力松弛,其实都围绕着四个物理量即应力、应变、温度和时间。通常是固定两个量,研究另两个量的关系(表7-5)。
表7-5力学性质四参量之间的关系
名称
σ
ε
T
t
关系
形变-温度曲线
固定
改变
改变
固定
ε=f(T)σ,t
应力-应变曲线
改变
改变
固定
固定
σ=f(ε)T,t
蠕变曲线
固定
改变
固定
改变
ε=f(t)σ,T
应力松弛曲线
改变
固定
固定
改变
σ=f(t)ε,T
如前所述,粘d性可以作为时间(或频率)的函数来表示,称为时间(或频率)谱,另一方面粘d性也可以作为温度的函数来表示,称为温度谱(如模量-温度曲线或形变-温度曲线)。其实这两种谱是可以互相转换的。对于同一个力学松弛现象,既可在较高的温度下在较短的时间内观察到,也可以在较低的温度下较长的时间内观察到。因此升高温度和延长时间对聚合物的粘d行为是等效的。这个原理称为时温等效原理。
从形变-温度曲线我们知道塑料和橡胶的区别是在室温下划分的。如果升高温度,塑料能变为橡胶,例如有机玻璃在开水中能弯曲成任意形状;相反降低温度,橡胶也能变为塑料,例如天然橡胶的汽车轮胎,在-40℃的高寒地区使用时就会象塑料一样脆。根据时温等效原理,时间也能改变塑料和橡胶。同在室温下,处于玻璃态的塑料若在几百年的时间尺度上可以看成象橡胶一般易于变形。虽然塑料的历史还没这么久,我们无法用实验证明这一点,但欧洲有几百年历史的教堂上的窗玻璃能观察到上薄下厚的变化说明了这一原理。另一方面橡胶在极短时间内观察则成为塑料,例如飞机上的橡胶轮胎在高速下遇到外来物体的撞击会像玻璃一样碎掉,原因就是如此。
时温等效可以借助一个转换因子aT来实现。
式中:ts和ωs分别为参考温度下的时间或频率。
Williams,Landel和Ferry提出了如下经验方程
这就是著名的WLF方程。式中Ts是参考温度,c1和c2为经验常数。当选择Tg作为参考温度时,则c1=1744,c2=516。
利用上述两式,低温下测定的力学数据就可换成短时间(或高频)下的数据,另一方面高温下测定的力学数据可转换为长时间(或低频)下的数据。这样本来要得到完整的谱图需要等待几个世纪甚至更长时间的实验可以在高温下但较短时间内完成,同样要求在毫微秒或更短时间测定的难以实现的实验也能通过降低温度而实现。

1)重量偏差:是指实纺线密度与设计线密度重量差异百分数。常用考核指标是百米重量偏差,一般控 制在-2525范围内。
2)重量变异系数:是表示纱线线密度不匀的指标。常用考 核指标是百米重量变异系数。
3)棉结杂质粒数(/g):在规定的条件下,将试样卷 绕在黑板上,在特定的灯光条件下,目测检验卷绕在黑板上纱线的棉结杂质数,又 称黑板棉结杂质数。常用考核指标是 1g 纱线的棉结或棉结杂质总粒数。
4)条干均匀度:有黑板目测条干和电容检测条干不匀率两种表示方法,前者主要用在国标评 等及没有电容式条干仪的企业;后者是国际通用指标,可参考 2001年乌斯特公报统 计值。5)粗节、细节与棉结:各种类型的条干仪一般都将纱疵分为粗节、细节与棉 结,以每千米个数为单位,试验纱长不为 1000m 时分别折算成每千米的个数。粗 节、细节与棉结考核标准分别是超出50、-50、200(转杯纺280)范围的疵点数(高 档客户标准可以加严)。
6)单纱断裂强力(强度)、断裂伸长率及断裂功:使用专 用仪器设备拉伸试样直至断裂,同时记录断裂强力和断裂伸长率,据此计算出断裂 强度和断裂功。

<1>紧密纺是在改进的新型环锭细纱机上进行纺纱的一种新型纺纱技术。其纺纱机理主要是:在环锭细纱机牵引装置前增加了一个纤维凝聚区,基本消除了前罗拉至加捻点之间的纺纱加捻三角区。纤维须条从前罗拉前口输出后,先经过异形吸风管外套网眼皮圈,须条在网眼皮圈上运动,由于气流的收缩和聚合作用,通过异形管的吸风槽使须条集聚、转动,逐步从扁平带状转为圆柱体,纤维的端头均捻入纱线内,因此成纱非常紧密,纱线外观光洁、毛羽少。紧密纺纱线 强力较高,毛羽较少。

<2>赛络纺是由两根有一定间距的须条喂入细纱牵伸区,分别牵伸后加捻成纱,两股须条存在一股断头后另一股跑单纱的情况,并且在纺纱张力稳定的情况下不断头,造成错支纱,为保证纺纱质量,需加装赛络纺单纱打断装置,一股断头后打断装置能将另一股单纱打断。

新西兰羊毛研究机构的子公司发展公司是首批授权的赛络纺技术传授者之一,该技术能生产单股精梳毛纱,这种纱可以不经上浆或任何后整理而直接作为经纱进行织造。无须双股并纱或应用保护涂层面而直接织造单股纱的能力,长期来一直是精梳毛纺业追寻的目标。赛络纺纱线显着增加了生产效率,并为羊毛开发新的产品提供了机遇。该技术的基础是一对附加罗拉,它与一个简单的夹钳一起安装在细纱机的牵伸摇架上。这些获专利的罗拉有一个特殊的沟槽表面,它改变了纤维捻入牵伸须条的方式,而对常规 *** 作无任何影响。它也可以与自动落筒装置相容。乍看起来成品纱与常规纱无任何区别,但磨损试验清楚地显示了它非常优越的质量。该加工过程保证纤维被牢牢地锁入纱线的结构中,使纱线更光洁,从而能抵御织机上的连续摩擦和磨损。然而,单纱的织造不仅仅考虑产品质量,更多的是考虑生产效率。首先,由于免去了加捻和相应的处理,整个生产过程大大缩短。

其次,与常规纱相比生产同样数量的织物,由于赛络纺只需提供一半长度的纱,因而显着地提高了细纱生产率,且由于纺制两倍于常规纱的支数,断头率也显着下降。在可织单纱计划的中试阶段,意大利、澳大利亚和新西兰的工厂将该罗拉各安装了一台细纱机,生产出商业批量的纱,接着将这些纱织入一系列的织物中。所有的报告都反映出纺纱和织造的效率都是令人满意的。在强力、伸长和均匀度方面,赛罗纺纱与传统的双股纱没有明显的差别。纺纱后赛络纺纱将以普通的单股纱同样的方式进行自动蒸压定形、络筒、清纱和捻接。采用赛罗纺纱技术纺股线可以省却两股并合和加捻的工序而降低生产成本。它在环锭精纺机上平行喂入两根粗纱,经牵伸后在前罗拉输出再将两股须条加捻成纱。印度纺织科学技术研究院对涤毛混纺比为55/45的赛罗纺纱工艺参数作了研究,并且与同等纱支的单纱和双纱作了对比。在梳毛纺纱工艺系统中,采用3d涤纶和225μm羊毛以55/45混纺比纺Nm20赛络纱,用22d涤纶和20μm羊毛以55/45混纺比纺Nm35赛络纱,采用6、8、10、12、14mm五种不同的须条间距和75、85、95三种不同的捻系数分别进行试验。成纱进行CV、纱疵、毛羽、单纱强力和断裂伸长以及耐磨性和压缩系数的对比。同时与同等纱支的单纱和双纱进行对比。试验结果表明,涤毛混纺的赛络纱的特性可以通过工艺参变数的选择而优化。须条间距为10mm时成纱CV和耐磨性较好,然而间距增大会使细节增多。当须条间距为12mm时强力和断裂伸长最大。须条间距不同对成纱毛羽因纱支而异,间距增加到10mm,则长短毛羽趋向减少。须条间距对成纱压缩系数没有影响。一般捻系数较大则成纱不匀,毛羽和压缩系数较低,强力和耐磨性较好。除CV、纱疵和断裂伸长外,赛络纱的其他性能比同等纱支的单纱或双纱更好。在赛络纺纱线结构中成纱与单股均有一定的捻度,其成纱过程中实际进行了二次加捻,其单股与成纱具有同向加捻的效果,从而纱线外表光洁、平滑、毛羽少、耐磨性能好,虽然是单纱但有股线的效果,可部分取代股线,因而减少了工序,降低了成本,增加了企业经济效益。赛络纺与普通环锭纱相比,毛羽大大减少,为后道工序的织造提供了良好的条件。

由于双粗纱喂入,细纱机上的吊锭需要增加一倍,另外每一股粗纱的定重要比同实纺支数的传统单纱的粗纱轻一半,而且赛络纺必须有切断装置,在纺纱过程中,万一有一股纤维束断裂,必须及时将另一股纤维束切断,否则会造成纱疵。有不少文章讨论赛络纺粗纱间距大小问题,笔者认为粗纱间距确实对纺纱质量有很大的<BR>关系,但却不能有一个定值。为什么?因为这粗纱间距的确定还受原料情况的制约。假设粗纱间距定14毫米,如果你的原料强力较差,或者段毛较多,设备状态较差那就很容易产生条干不匀以及断头增加,相反地你适当将开档缩小一点,那纱线条干质量断头数量就会有所改善。反过来说,你定了粗纱间距以后,你必须控制你的原料物理指标使其符合纺纱要求。赛络纺一般都配置打断器,打断器都依据粗纱间距来设计的,当须条间距变小后,纱线断头时打断器可能检测不出(无断头信号)从而不能打搅断另一股纤维束以致产生跑单纱的纱疵。

介绍了赛络纺纱技术的原理,在棉纺细纱机上的实现方法,赛络纺纯棉精梳纱、混纺纱和涤粘复合纱的纺纱工艺,对比分析了赛络纺成纱质量与环锭纺成纱质量。认为赛络纱的成纱毛羽、条干、强力优于环锭纱,但细节差于环锭纱。

传统环锭纺纱成纱毛羽多,毛羽不仅影响纱线本身的表面光洁度和纤维强力利用系数,而且影响后工序加工的顺利进行。另一方面随着织造技术进步,无梭织机对成纱质量的要求越来越高,毛羽问题更为突出。为了减少成纱毛羽,可以在原料选配、工艺优化、器材选择和 *** 作管理等方面采取措施。同时,也可以应用纺纱新技术,如紧密纺纱技术、络筒机吹捻装置。此外,赛络纺纱技术也可以减少成纱毛羽。该纺纱原理是1975年~1976年由澳大利亚联邦科学与工业研究机构(CSIRO)发明,最初的目的是要减少毛纱毛羽。1978年国际羊毛局将这项科研成果推向实用化,1980年正式向世界各国推荐。赛络纺纱主要用于羊毛、毛型涤纶、腈纶的纯纺或混纺,在棉纺细纱机上也可以应用。赛络纺纱技术在实际生产中实施起来非常简便,对环锭细纱机稍作改动即可,改造后的纺纱机既可纺制赛络纱线,也可以根据需要随时方便地恢复成原来的普通环锭细纱机。

1 赛络纺纱方法:

赛络纱可以用于机织或针织,其工艺是将两根具有一定间距的粗纱平行喂人到细纱机同一牵伸区进行牵伸,然后在同一个锭子上加捻卷绕。具体地说,需要进行以下几方面的改造:(1)改装粗纱架,增加一倍的粗纱吊锭,托锭加吊锭改装更方便些;(2)将原来牵伸机构中的横动喇叭口调换为双眼形式;(3)导纱横动装置固定在中央位置或作小动程横动;(4)增加断头自停装置,其作用是防止纺单纱现象,即当一根粗纱条断头时,为避免产生长片段细节纱疵,必须将另一根纱条也及时打断。

近年来,棉纺行业也开始引用这种纺纱方法。一般棉纺所纺纱线多为本色纱,只要减少挡车工的看台数,可以不采用价格昂贵的断头自停装置。

2 赛络纺纱实践

2.1纯棉精梳产品

在改造过的细纱机上纺CJ 14.5 tex赛络纱,采用两种不同的纺纱工艺流程。

赛络纺CJ 14.5 tex与环锭纺CJ 14.5 tex成纱质鼍对比见表1。

从表1可以看出,赛络纱的条干CV值、单纱断裂强力、断裂伸长率等指标优于环锭纱,但细节偏多。方案一所纺赛络纱的条干、细节、粗节、单强、伸长率等指标优于方案二,综合性能最佳。参照2001年乌斯特公报,方案一的成纱条干、粗节、棉结都相当于5%~25%的水平,细节相当于25%~50%的水平。

2.2混纺产品

在相同条件下纺制T/CJ 65/35 13.1 tex赛络纱和普通环锭纱,赛络纺纱工艺为:粗纱号数330tex,牵伸倍数(前×后)39.6倍×1.25倍,捻度34.5捻/m;细纱机前罗拉速度229 r/min,锭速17278 r/min。成纱质量对比见表2。

同细度的赛络纱与环锭纱相比,赛络纱单强高,百米重量CV小,毛羽减少,条干质量基本相当,细节多,粗节、棉结数量相当。

2.3 复合纱

当喂入两根粗纱为不同原料时,纺出纱为复合纱,又称AB纱。利用赛络纺纱技术纺制T/R55/45 18.5 tex复合纱,细纱工艺为:涤纶粗纱定量3.9g/10 m,粘胶粗纱定量3.2g/10 m,细纱捻系数314,罗拉隔距19 mm×33 mm,后区牵伸倍数1.25倍,钳口隔距3.0 mm,钢丝圈型号FU5/0,前罗拉速度230 r/min,锭速14 400 r/min。成纱质量为:条干CV 13.46%,细节5个/km,粗节46个/km,棉结59个/km,单强23.3 cN/tex,单强CV值5.72%,断裂伸长率10.86%,断裂伸长CV5.09%。

由此可以看出,赛络纺复合纱的质量指标比较理想。

3 结束语

赛络纱质量较好,尤其是成纱毛羽、条干、强力指标优于环锭纱,可以满足机织和针织用纱要求。赛络纱的缺点是细节偏多,主要是由于从前钳口输出两根纱条的汇聚点在纺纱过程中上下不断波动,引起汇聚点至前钳口一段纱条上的捻度大小发生变化,捻度小、意外牵伸大造成细节偏多。同时赛络纺加工时要求细纱大牵伸、粗纱小定量,又影响到了经济效益,这方面需要进一步改进提高。

断裂韧性的单位正常输入。断裂韧性单位为Mpam12或KNm减32,表示材料抵抗断裂的能力,冲击韧性是指材料在冲击载荷作用下吸收塑性变形功和断裂功的能力,反映材料内部的细微缺陷和抗冲击性能,冲击韧度指标的实际意义在于揭示材料的变脆倾向,是反映金属材料对外来冲击负荷的抵抗能力,由冲击韧性值ak和冲击功Ak表示,其单位分别为Jcm2和J焦耳,影响钢材冲击韧性的因素有材料的化学成分、热处理状态、冶炼方法、内在缺陷、加工工艺及环境温度。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12897708.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-28
下一篇 2023-05-28

发表评论

登录后才能评论

评论列表(0条)

保存