反函数是什么,怎么算,要具体反函数是什么,该怎么算,要具体

反函数是什么,怎么算,要具体反函数是什么,该怎么算,要具体,第1张

简单地说,函数就是从函数y=f(x)中解出x 用y表示x=φ(y),如果对于y的每一个值,x都有唯一的值和它对应,那么x=φ(y)就是y=f(x)的反函数,习惯上,用x表示自变量,所以 x=φ(y) 通常写成y=φ(y)
(即对换x,y的位置)
求一个函数的反函数的步骤:
(1)从原函数式子中解出 x 用 y 表示;
(2)对换
x,
y
,
(3)标明反函数的定义域
如:求y=√(1-x)
的反函数注:√(1-x)表示根号下(1-x) 
两边平方,得y²=1-x
x=1-y²
对换x,y
得 y=1-x²
所以 反函数为y=1-x²(x≥0)
注:反函数里的x是原函数里的y
,原函数中,y≥0,所以反函数里的x≥0
在原函数和反函数中,由于交换了x,y的位置,所以原函数的定义域是反函数的值域,原函数的值域是反函数的定义域

有没有反函数就看函数在定义域内是否单调,单调的话就有反函数。
定义域为非单元素集就是说定义域不只是一个点,这样的话由于偶函数关于Y轴对称,所以该函数不是单调函数,所以没有反函数。即y=x^2,定义域为实数,它就没有反函数;而当定义域为x=0时,它又有反函数,此时x=0就是所谓的单元素集。

一、揭示课题师:今天我们将学习函数中一个重要的概念——反函数(板书:反函数 1反函数的概念)二、讲解新课三、师:什么是反函数呢?让我们一起来思考这样一个问题:在函数中,如果当作因变量,把y当作自变量,能否构成一个函数呢?生:可以构成一个函数师:为什么是个函数呢?生:在y允许取值范围内的任一值,按照法则→都有唯一的x与之相应师;根据这位同学的表述,这是符合函数定义的,也就是说,按照上述原则,函数是存在反函数的这个反函数的解析式是怎样的呢?生:应该是师:这种表示方法是没有问题的,但不符合我们的习惯,按习惯用字母x表示自变量,用字母y表示因变量,故这个函数的解析式又可以写成这样改动之后,带来这样一个问题,即和是不是同一函数呢?生:是师:能具体解释一下吗?生:从函数三要素的角度看,和具有相同的定义域和值域,皆为R,同时对应法则都是自变量减1除以2得因变量,也是相同的,所以它们是相同的函数师:既然是相同的,我们就把称作函数的反函数,同样,函数y=x-1 2有没有反函呢?生:有就是师:对也就是说函数与函数是互为反函数的那么,是不是所有函数都会有反函数呢?生:不是所有函数都有反函数师:能举个例子说明吗?生:如函数,将y当作自变量,x当作因变量,在y允许取值范围内,一个y可能对应两个x,如y=1则x=±1,因此不能构成函数,说明它没反函数师:说得非常好.如果从形的角度来解释,会看得更清楚,见图1,从图中可看出给出一个y能对应两个x.缺图1通过对几个具体函数的研究,了解了什么是反函数,把前面对函数y=2x+1的反函数的研究过程一般化,概括起来就可以得到反函数的定义.由于这个定义比较长,所以我们一起阅读书上相关内容.(板书:(1)反函数的定义)(要求学生打开书第60页第二自然段,请一名同学朗读这一段内容.)为帮助学生理解定义中的描述,教师可以再以一上具体函数为例解释y=f(x)和x=j(y)之间的关系,同时应指出定义中"如果"二字的含义表示不是所有函数都有反函数.) 对于反函数有了初步的了解之后,下面进一步对这个特殊的函数概念作点深入研究.(板书:(2)对概念的理解.)师:反函数的“反”字应当是相对原来给出的函数而言的,那么它们之间有什么关呢?不妨以刚才的两个函数y=2x+1和为例加以研究.生:对应法则不同.师:能否说得再具体点,怎么不同?生:这两个函数的对应法则中,x与y的位置换位.(研究两函数间的关系应从函数三要素角度入手研究,老师可适当引导学生向三要素靠拢.)师:还有什么联系吗?生:当的定义域和值域分别是y=2x+1的值域和定义域.师:根据刚才我们的讨论,可以发现反函数的三要素是由原来函数决定的,当给出的函数确定下来后,其反函数的三要素也就确定下来了,可以简记为“三定”.把这种确定关系具体化,也就是反函数的“反”字体现在什么地方呢?生:反函数的定义域就是原来函数的值域;反函数的值域就是原来函数的定义域;反函数的对应法则就是把原来函数对应法则中x与y的位置互换.师:由此我们可以看到反函数的“反”实际体现为“三反”.在这“三反”中,起决定作用的就是x与y的反置,正是由于它们位置的改变,才把相应取值反置,从而引起另外两“反”.(板书:a“三定”,b“三反”)师:从函数概念的角度来看,我们明确了原来函数与其反函数间的关系,当然还可以从其它方面入手进行研究,如:一个函数有没有反函数?若有反函数,它的性质如何?与原来函数的性质有什么关系?通过前面几个例子可以发现,上述问题中,原来函数的性质起着决定性作用,而且反函数的性质也与原来函数的性质相关.由于函数和反函数有如此密切的关系,它已成为进一步研究函数的重要方面.当我们研究某个函数性质时,如果这个函数有反函数,就可以在两者中择其简而研究之,这就增加了函数的研究方法.师:对反函数概念作了较全面认识之后,自然提出这样一个问题:如果一个函数存在反函数,如何去求这个函数的反函数呢?一起看这样二个题目.例1 求的反函数.生:(板书)解 由, 得 所以,所求反函数为(在表述上不规范之处,先暂时不追究,待例2解完之后再一起讲评.)例2 求的反函数.生:(板书)解 由y=得又所以故 .师:下面请同学对两个例题的表述作个评价.生:例2所求的反函数是错误的,应为 (x≥2)师:这和黑板上所得的函数有什么不同吗?生:两个函数的定义域分别是x≥1和x≥2,所以是不同的两个函数.师:为什么是(x≥2)呢?生:因为反函数的定义域应是原来给出函数f(x)的值域,而f(x)的值域应为y≥2,故所求反函数应为 (x≥2).师:说得很好.根据我们对反函数的认识,反函数的定义域就是原来给出函数的值域.所以,要求出反函数的定义域,就必须先求出原来函数的值域.那么例2的求解过程应当怎样调整呢?生:由得,又x≥1,所以.因为的值域为,所以 (x≥2).师:通过刚才的讨论,我们发现并解决了例2反函数的存在问题,同时也注意到求反函数必须明确指出其定义域,以保证结论的正确性.除此之外,还有什么问题吗?生:为什么没有在例1中求原来所给函数的值域呢?师:请同学们针对这个问题讨论一下.生:因为原来所给的函数的值域是y≠0,这和所求出的反函数的定义域是x≠0为结论是一致的,所以没有出错.师:此题出现的这种结论的一致性,应当说是一种偶然,而不是必然.因此,在求反函数的过程中,必须要求出原来所给函数的值域,并且在最后结果中注明反函数的定义域.那么,例1的规范书写过程应如何调整呢?生:(板书)解 由,所以,所求反函数为师:通过刚才对两个具体例子的讨论,能否总结一下求用解析式表达的函数的反函数的基本步骤呢?(板书:2.求反函数的步骤)生:首先从解析式中解出x,其次求出所给函数的值域,最后再改写为习惯的表示形式.师:把这几步用简单的几个字来概括一下:1.反解:即把解析式看作x的方程,求出反函数的解析式;2.互换:既求出所给函数的值域并把它改换为反函数的定义域;3.改写:将函数写成的形式.(板书:1.反解 2.互换 3.改写.)师:下面通过几个练习来看看同学们是否真正理解这三个基本步骤.三、巩固练习练习 求下列函数的反函数1. (由一个学生在黑板上完成.)解 由 x=3 2y-2又f(x)=23x+3,x∈(-∞,3)的值域为 f(x)∈(-∞,4),所以f-1(x)=32x-2,x∈(-∞,4)2y=x2-x+1(x≥12)(由一个学生在黑板上完成,两题同时进行,其余学生在笔记本上完成,教师巡视.)解 由 y=x2-x+1,得 x2-x+1-y=0,所以 x=1±4y-32,又 y=x2-x+1(x≥12)的值域为{y|y≥34},所以,f-1(x)1±4x-32(x≥34)(待全体学生完成之后,结合黑板上学生的表述及其它学生解答中出现的问题进行讲评.)师:先看黑板上同学的表述有没有问题,请加以纠正.(一学生在黑板上加以改正)由y=x2-x+1,得 x2-x+1-y=0,所以x=1±4y-32 又x≥12,所以 x=1+4y-32 又y=x2-x+1(x≥12)的值域为{y|y≥34},故所求反函数为y=1+4x-32 (x≥34) 师:经过改正,两个题目在表述上已经没有问题了.下面结合其它同学求解中出现的一些问题,谈几点注意.(1) 求反函数的过程中必有一步是求出原来所给函数的值域.求值域的方法有很多,如果所给函数是常见函数如一次函数、二次函数等,不妨从“形”的角度求值域会比较方便直观(2) 解关于x的一元二次方程有两个根,必须根据题目所给条件对x进行取舍,保留符合条件的唯一解(3) 这两个题目在反函数符号的使用上是有区别的,题目给出f(x)这个符号,则反函数可以用f-1(x)来表示,否则只能用文字叙述的形式四、小结1反函数是函数中一个重要的概念,它是从研究两个函数关系的角度产生的,因此认识它应从三要素角度进行研究2一个函数有没有反函数是由原来给出函数的性质决定的,且反函数的性质也是由原来给出的函数性质决定的3求反函数实际上就是办两件事,一是解一个关于自变量x的方程,二是求 一个函数的值域

若: F = A + BC

那么:F' = (A + BC)' = A'(BC)' = A'(B'+ C') = A'B' + A'C'

式中 F' 为F的非(逆),也就是F的反函数。

总之一个逻辑代数的表达式F或称逻辑函数的反函数F'可用逻辑代数的定理、公式、真值表获得。

扩展资料:

在运用反演定理时还需注意遵守以下规则:

(1)仍需遵守“先括号内,后括号外,先乘后加”的运算顺序;

(2)不属于单个变量上的反号应保留不变。

用反演定理可以很方便地求出逻辑函数的反函数。

参考资料来源:百度百科-反演定理

反函数的符号记为f -1(x)。

反函数符号是记录一个函数的反函数的符号,英文为inverse function,中文为反函数。函数 f 的反函数就念成 “ 函数 f 反函数 ”,念成其他都是不对的。

反函数的定义不算很明确,但是说到底就是把y=f(x)解出来,表示成x=g(y),但是这个函数并不是f(x)的反函数,这个时候虽然表示形式不同,

但和y=f(x)实质上还是同一个函数,交换xy得到y=g(x),这个函数才是f(x)的反函数。所以要求反函数就可以直接把xy交换,解出y=g(x)=f-1(x)就是反函数。

扩展资料:

定理:严格单调函数必定有严格单调的反函数,并且二者单调性相同。

在证明这个定理之前先介绍函数的严格单调性。

设y=f(x)的定义域为D,值域为f(D)。如果对D中任意两点x1和x2,当x1<x2时,有y1<y2,则称y=f(x)在D上严格单调递增;当x1<x2时,有y1>y2,则称y=f(x)在D上严格单调递减。

证明:设f在D上严格单增,对任一y∈f(D),有x∈D使f(x)=y。

而由于f的严格单增性,对D中任一x'<x,都有y'<y;任一x''>x,都有y''>y。总之能使f(x)=y的x只有一个,根据反函数的定义,f存在反函数f-1。

任取f(D)中的两点y1和y2,设y1<y2。而因为f存在反函数f-1,所以有x1=f-1(y1),x2=f-1(y2),且x1、x2∈D。

若此时x1≥x2,根据f的严格单增性,有y1≥y2,这和我们假设的y1<y2矛盾。

因此x1<x2,即当y1<y2时,有f-1(y1)<f-1(y2)。这就证明了反函数f-1也是严格单增的。

参考资料来源:百度百科-反函数

设函数y=f(x)根据这个函数中x,y 的关系,用y把x表示出,得到x= f(y),然后再将这个函数中的X,Y互换,如果得到的函数与另一函数一样,则两个函数互为反函数。
但要注意的是,这两个函数必须都是单调的,且一个函数的定义域是另一个函数的值域。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12903219.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-28
下一篇 2023-05-28

发表评论

登录后才能评论

评论列表(0条)

保存