你说的那个“已经对返回结果的控制” 可能是“以及对返回结果的控制”,只提取需要的数据,可以简化的结果数据都进行简化,到后台写几段代码再解析也会提升效率。1 执行计划中明明有使用到索引,为什么执行还是这么慢?
2 执行计划中显示扫描行数为 644,为什么 slow log 中显示 100 多万行?
a 我们先看执行计划,选择的索引 “INDX_BIOM_ELOCK_TASK3(TASK_ID)”。结合 sql 来看,因为有 "ORDER BY TASK_ID DESC" 子句,排序通常很慢,如果使用了文件排序性能会更差,优化器选择这个索引避免了排序。
那为什么不选 possible_keys:INDX_BIOM_ELOCK_TASK 呢?原因也很简单,TASK_DATE 字段区分度太低了,走这个索引需要扫描的行数很大,而且还要进行额外的排序,优化器综合判断代价更大,所以就不选这个索引了。不过如果我们强制选择这个索引(用 force index 语法),会看到 SQL 执行速度更快少于 10s,那是因为优化器基于代价的原则并不等价于执行速度的快慢;
b 再看执行计划中的 type:index,"index" 代表 “全索引扫描”,其实和全表扫描差不多,只是扫描的时候是按照索引次序进行而不是行,主要优点就是避免了排序,但是开销仍然非常大。
Extra:Using where 也意味着扫描完索引后还需要回表进行筛选。一般来说,得保证 type 至少达到 range 级别,最好能达到 ref。
在第 2 点中提到的“慢日志记录Rows_examined: 1161559,看起来是全表扫描”,这里更正为“全索引扫描”,扫描行数确实等于表的行数;
c 关于执行计划中:“rows:644”,其实这个只是估算值,并不准确,我们分析慢 SQL 时判断准确的扫描行数应该以 slow log 中的 Rows_examined 为准。
4 优化建议:添加组合索引 IDX_REL_DEVID_TASK_ID(REL_DEVID,TASK_ID)
优化过程:
TASK_DATE 字段存在索引,但是选择度很低,优化器不会走这个索引,建议后续可以删除这个索引:
select count(),count(distinct TASK_DATE) from T_BIOMA_ELOCK_TASK;+------------+---------------------------+| count() | count(distinct TASK_DATE) |+------------+---------------------------+| 1161559 | 223 |+------------+---------------------------+
在这个 sql 中 REL_DEVID 字段从命名上看选择度较高,通过下面 sql 来检验确实如此:
select count(),count(distinct REL_DEVID) from T_BIOMA_ELOCK_TASK;+----------+---------------------------+| count() | count(distinct REL_DEVID) |+----------+---------------------------+| 1161559 | 62235 |+----------+---------------------------+
由于有排序,所以得把 task_id 也加入到新建的索引中,REL_DEVID,task_id 组合选择度 100%:
select count(),count(distinct REL_DEVID,task_id) from T_BIOMA_ELOCK_TASK;+----------+-----------------------------------+| count() | count(distinct REL_DEVID,task_id) |+----------+-----------------------------------+| 1161559 | 1161559 |+----------+-----------------------------------+
在测试环境添加 REL_DEVID,TASK_ID 组合索引,测试 sql 性能:alter table T_BIOMA_ELOCK_TASK add index idx_REL_DEVID_TASK_ID(REL_DEVID,TASK_ID);
添加索引后执行计划:
这里还要注意一点“隐式转换”:REL_DEVID 字段数据类型为 varchar,需要在 sql 中加引号:AND TREL_DEVID = 000000025xxx >> AND TREL_DEVID = '000000025xxx'
执行时间从 10s+ 降到 毫秒级别:
1 row in set (000 sec)
结论
一个典型的 order by 查询的优化,添加更合适的索引可以避免性能问题:执行计划使用索引并不意味着就能执行快。�纬闪似烤毙вΑ� 3、没有创建计算列导致查询不优化。 4、内存不足5、网络速度慢6、查询出的数据量过大(可以采用多次查询,其他的方法降低数据量) 7、锁或者死锁(这也是查询慢最常见的问题,是程序设计的缺陷) 8、sp_lock,sp_who,活动的用户查看,原因是读写竞争资源。 9、返回了不必要的行和列10、查询语句不好,没有优化 可以通过以下方法来优化查询 : 1、把数据、日志、索引放到不同的I/O设备上,增加读取速度,以前可以将Tempdb应放在RAID0上,SQL2000不在支持。数据量(尺寸)越大,提高I/O越重要。 2、纵向、横向分割表,减少表的尺寸(sp_spaceuse) 3、升级硬件 4、根据查询条件,建立索引,优化索引、优化访问方式,限制结果集的数据量。注意填充因子要适当(最好是使用默认值0)。索引应该尽量小,使用字节数小的列建索引好(参照索引的创建),不要对有限的几个值的字段建单一索引如性别字段。 5、提高网速。 6、扩大服务器的内存,Windows 2000和SQL server 2000能支持4-8G的内存。 配置虚拟内存:虚拟内存大小应基于计算机上并发运行的服务进行配置。运行 Microsoft SQL Server 2000时,可考虑将虚拟内存大小设置为计算机中安装的物理内存的15倍。如果另外安装了全文检索功能,并打算运行Microsoft搜索服务以便执行全文索引和查询,可考虑:将虚拟内存大小配置为至少是计算机中安装的物理内存的3倍。将SQL Server max server memory服务器配置选项配置为物理内存的15倍(虚拟内存大小设置的一半)。 7、增加服务器CPU个数;但是必须 明白并行处理串行处理更需要资源例如内存。使用并行还是串行程是MsSQL自动评估选择的。单个任务分解成多个任务,就可以在处理器上运行。例如耽搁查询 的排序、连接、扫描和GROUP BY字句同时执行,SQL SERVER根据系统的负载情况决定最优的并行等级,复杂的需要消耗大量的CPU的查询最适合并行处理。但是更新 *** 作UPDATE,INSERT, DELETE还不能并行处理。 8、如果是使用like进行查询的话,简单的使用index是不行的,但是全文索引,耗空间。 like ''a%'' 使用索引 like ''%a'' 不使用索引用 like ''%a%'' 查询时,查询耗时和字段值总长度成正比,所以不能用CHAR类型,而是VARCHAR对于字段的值很长的建全文索引。 9、DB Server 和APPLication Server 分离;OLTP和OLAP分离 10、分布式分区视图可用于实现数据库服务器联合体。 联合体是一组分开管理的服务器,但它们相互协作分担系统的处理负荷。这种通过分区数据形成数据库服务器联合体的机制能够扩大一组服务器,以支持大型的多层 Web 站点的处理需要。有关更多信息,参见设计联合数据库服务器。(参照SQL帮助文件''分区视图'') a、在实现分区视图之前,必须先水平分区表 b、在创建成员表后,在每个成员服务器上定义一个分布式分区视图,并且每个视图具有相同的名称。这样,引用分布式分区视图名的查询可以在任何一个成员服务器上 运行。系统 *** 作如同每个成员服务器上都有一个原始表的复本一样,但其实每个服务器上只有一个成员表和一个分布式分区视图。数据的位置对应用程序是透明的。 11、重建索引 DBCC REINDEX ,DBCC INDEXDEFRAG,收缩数据和日志 DBCC SHRINKDB,DBCC SHRINKFILE 设置自动收缩日志。对于大的数据库不要设置数据库自动增长,它会降低服务器的性能。 在T-sql的写法上有很大的讲究,下面列出常见的要点:首先,DBMS处理查询计划的过程是这样的: 1、 查询语句的词法、语法检查2、 将语句提交给DBMS的查询优化器3、 优化器做代数优化和存取路径的优化4、 由预编译模块生成查询规划5、 然后在合适的时间提交给系统处理执行6、 最后将执行结果返回给用户。 其次,看一下SQL SERVER的数据存放的结构:一个页面的大小为8K(8060)字节,8个页面为一个盘区,按照B树存放。 12、 Commit和rollback的区别 Rollback:回滚所有的事物。 Commit:提交当前的事物。 没有必要在动态SQL里写事物,如果要写请写在外面如: begin tran exec(@s) commit trans 或者将动态SQL 写成函数或者存储过程。 13、在查询Select语句中用Where字句限制返回的行数,避免表扫描,如果返回不必要的数据,浪费了服务器的I/O资源,加重了网络的负担降低性能。如果表很大,在表扫描的期间将表锁住,禁止其他的联接访问表,后果严重。 14、SQL的注释申明对执行没有任何影响 15、尽可能不使用光标,它占用大量的资源。如果需要row-by-row地执行,尽量采用非光标技术,如:在客户端循环,用临时表,Table变量,用子查询,用Case语句等等。 游标可以按照它所支持的提取选项进行分类:只进必须按照从第一行到最后一行的顺序提取行。FETCH NEXT 是唯一允许的提取 *** 作,也是默认方式。可滚动性可以在游标中任何地方随机提取任意行。游标的技术在SQL2000下变得功能很强大,他的目的是支持循环。 有四个并发选项 READ_ONLY:不允许通过游标定位更新(Update),且在组成结果集的行中没有锁。 OPTIMISTIC WITH valueS:乐观并发控制是事务控制理论的一个标准部分。乐观并发控制用于这样的情形,即在打开游标及更新行的间隔中,只有很小的机会让第二个用户更新某一行。当某个游标以此选项打开时,没有锁控制其中的行,这将有助于最大化其处理能力。如果用户试图修改某一行,则此行的当前值会与最后一次提取此行时获取的值进行比较。如果任何值发生改变,则服务器就会知道其他人已更新了此行,并会返回一个错误。如果值是一样的,服务器就执行修改。 选择这个并发选项OPTIMISTIC WITH ROW VERSIONING:此乐观并发控制选项基于行版本控制。使用行版本控制,其中的表必须具有某种版本标识符,服务器可用它来确定该行在读入游标后是否有 所更改。在SQL Server中,这个性能由timestamp数据类型提供,它是一个二进制数字,表示数据库中更改的相对顺序。 每个数据库都有一个全局当前时间戳值:@@DBTS每次以任何方式更改带有 timestamp 列的行时,SQL Server 先在时间戳列中存储当前的 @@DBTS 值,然后增加 @@DBTS 的值。如果某 个表具有 timestamp 列,则时间戳会被记到行级。服务器就可以比较某行的当前时间戳值和上次提取时所存储的时间戳值,从而确定该行是否已更新。服务器不必比较所有列的值,只需 比较 timestamp 列即可。如果应用程序对没有 timestamp 列的表要求基于行版本控制的乐观并发,则游标默认为基于数值的乐观并发控制。 SCROLL LOCKS 这个选项实现悲观并发控制。在悲观并发控制中,在把数据库的行读入游标结果集时,应用程序将试图锁定数据库行。在使用服务器游标时,将行读入游标时会在其上放置一个更新锁。如果在事务内打开游标,则该事务更新锁将一直保持到事务被提交或回滚;当提取下一行时,将除去游标锁。如果在事务外打开游标,则提取下一行时,锁就被丢弃。 因此,每当用户需要完全的悲观并发控制时,游标都应在事务内打开。更新锁将阻止任何其它任务获取更新锁或排它锁,从而阻止其它任务更 新该行。然而,更新锁并不阻止共享锁,所以它不会阻止其它任务读取行,除非第二个任务也在要求带更新锁的读取。滚动锁根据在游标定义的 SELECT 语句中指定的锁提示,这些游标并发选项可以生成滚动锁。滚动锁在提取时在每行上获取,并保持到下次提取或者游标关闭,以先发生者为准。下次提取时,服务器为新提取中的行获取滚动锁,并释放上次提取中行的滚动锁。滚动锁独立于事务锁,并可以保持到一个提交或回滚 *** 作之后。如果提交时关闭游标的选项为关,则COMMIT语句并不关闭任何打开的游标,而且滚动锁被保留到提交之后,以维护对所提取数据的隔离。所获取滚动锁的类型取决于游标并发选项和游标 SELECT 语句中的锁提示。锁提示 只读乐观数值 指定NOLOCK 提示将使指定了该提示的表在游标内是只读的。 16、用Profiler来跟踪查询,得到查询所需的时间,找出SQL的问题所在;用索引优化器优化索引 17、注意UNion和UNion all 的区别。UNION all好 18、注意使用DISTINCT,在没有必要时不要用,它同UNION一样会使查询变慢。重复的记录在查询里是没有问题的 19、查询时不要返回不需要的行、列 20、 用sp_configure ''query governor cost limit''或者SET QUERY_GOVERNOR_COST_LIMIT来限制查询消耗的资源。当评估查询消耗的资源超出限制时,服务器自动取消查询,在查询之前就扼杀掉。 SET LOCKTIME设置锁的时间 21、用select top 100 / 10 Percent 来限制用户返回的行数或者SET ROWCOUNT来限制 *** 作的行 22、 在SQL2000以前,一般不要用如下的字句: "IS NULL", "<>", "!=", "!>", "!<", "NOT", "NOT EXISTS", "NOT IN", "NOT LIKE", and "LIKE ''%500''",因为他们不走索引全是表扫描。也不要在WHere字句中的列名加函数,如Convert,substring等,如果必须用函数的时 候,创建计算列再创建索引来替代。还可以变通写法:WHERE SUBSTRING(firstname,1,1) = ''m''改为WHERE firstname like ''m%''(索引扫描),一定要将函数和列名分开。并且索引不能建得太多和太大。NOT IN会多次扫描表,使用EXISTS、NOT EXISTS ,IN , LEFT OUTER JOIN 来替代,特别是左连接,而Exists比IN更快,最慢的是NOT *** 作。如果列的值含有空,以前它的索引不起作用,现在2000的优化器能够处理了。相同 的是IS NULL,“NOT", "NOT EXISTS", "NOT IN"能优化她,而”<>“等还是不能优化,用不到索引。 23、使用Query Analyzer,查看SQL语句的查询计划和评估分析是否是优化的SQL一般的20%的代码占据了80%的资源,我们优化的重点是这些慢的地方。 24、如果使用了IN或者OR等时发现查询没有走索引,使用显示申明指定索引: SELECT FROM PersonMember (INDEX = IX_Title) WHERE processid IN (‘男’,‘女’) 25、将需要查询的结果预先计算好放在表中,查询的时候再SELECT这在SQL70以前是最重要的手段。例如医院的住院费计算。 26、MIN() 和 MAX()能使用到合适的索引。 27、 数据库有一个原则是代码离数据越近越好,所以优先选择Default,依次为Rules,Triggers, Constraint(约束如外健主健CheckUNIQUE……,数据类型的最大长度等等都是约束),Procedure这样不仅维护工作小,编写程 序质量高,并且执行的速度快。 28、如果要插入大的二进制值到Image列,使用存储过程,千万不要用内嵌INsert来插入(不知JAVA 是否)。因为这样应用程序首先将二进制值转换成字符串(尺寸是它的两倍),服务器受到字符后又将他转换成二进制值。
数据千万级别之多,占用的存储空间也比较大,可想而知它不会存储在一块连续的物理空间上,而是链式存储在多个碎片的物理空间上。可能对于长字符串的比较,就用更多的时间查找与比较,这就导致用更多的时间。
可以做表拆分,减少单表字段数量,优化表结构。
在保证主键有效的情况下,检查主键索引的字段顺序,使得查询语句中条件的字段顺序和主键索引的字段顺序保持一致。
主要两种拆分 垂直拆分,水平拆分。
垂直分表
也就是“大表拆小表”,基于列字段进行的。一般是表中的字段较多,将不常用的, 数据较大,长度较长(比如text类型字段)的拆分到“扩展表“。 一般是针对 那种 几百列的大表,也避免查询时,数据量太大造成的“跨页”问题。
垂直分库针对的是一个系统中的不同业务进行拆分,比如用户User一个库,商品Product一个库,订单Order一个库。 切分后,要放在多个服务器上,而不是一个服务器上。为什么? 我们想象一下,一个购物网站对外提供服务,会有用户,商品,订单等的CRUD。没拆分之前, 全部都是落到单一的库上的,这会让数据库的单库处理能力成为瓶颈。按垂直分库后,如果还是放在一个数据库服务器上, 随着用户量增大,这会让单个数据库的处理能力成为瓶颈,还有单个服务器的磁盘空间,内存,tps等非常吃紧。 所以我们要拆分到多个服务器上,这样上面的问题都解决了,以后也不会面对单机资源问题。
数据库业务层面的拆分,和服务的“治理”,“降级”机制类似,也能对不同业务的数据分别的进行管理,维护,监控,扩展等。 数据库往往最容易成为应用系统的瓶颈,而数据库本身属于“有状态”的,相对于Web和应用服务器来讲,是比较难实现“横向扩展”的。 数据库的连接资源比较宝贵且单机处理能力也有限,在高并发场景下,垂直分库一定程度上能够突破IO、连接数及单机硬件资源的瓶颈。
水平分表
针对数据量巨大的单张表(比如订单表),按照某种规则(RANGE,HASH取模等),切分到多张表里面去。 但是这些表还是在同一个库中,所以库级别的数据库 *** 作还是有IO瓶颈。不建议采用。
水平分库分表
将单张表的数据切分到多个服务器上去,每个服务器具有相应的库与表,只是表中数据集合不同。 水平分库分表能够有效的缓解单机和单库的性能瓶颈和压力,突破IO、连接数、硬件资源等的瓶颈。
水平分库分表切分规则
1 RANGE
从0到10000一个表,10001到20000一个表;
2 HASH取模
一个商场系统,一般都是将用户,订单作为主表,然后将和它们相关的作为附表,这样不会造成跨库事务之类的问题。 取用户id,然后hash取模,分配到不同的数据库上。
3 地理区域
比如按照华东,华南,华北这样来区分业务,七牛云应该就是如此。
4 时间
按照时间切分,就是将6个月前,甚至一年前的数据切出去放到另外的一张表,因为随着时间流逝,这些表的数据 被查询的概率变小,所以没必要和“热数据”放在一起,这个也是“冷热数据分离”。
分库分表后面临的问题
事务支持
分库分表后,就成了分布式事务了。如果依赖数据库本身的分布式事务管理功能去执行事务,将付出高昂的性能代价; 如果由应用程序去协助控制,形成程序逻辑上的事务,又会造成编程方面的负担。
跨库join
只要是进行切分,跨节点Join的问题是不可避免的。但是良好的设计和切分却可以减少此类情况的发生。解决这一问题的普遍做法是分两次查询实现。在第一次查询的结果集中找出关联数据的id,根据这些id发起第二次请求得到关联数据。
跨节点的count,order by,group by以及聚合函数问题
这些是一类问题,因为它们都需要基于全部数据集合进行计算。多数的代理都不会自动处理合并工作。解决方案:与解决跨节点join问题的类似,分别在各个节点上得到结果后在应用程序端进行合并。和join不同的是每个结点的查询可以并行执行,因此很多时候它的速度要比单一大表快很多。但如果结果集很大,对应用程序内存的消耗是一个问题。
数据迁移,容量规划,扩容等问题
来自淘宝综合业务平台团队,它利用对2的倍数取余具有向前兼容的特性(如对4取余得1的数对2取余也是1)来分配数据,避免了行级别的数据迁移,但是依然需要进行表级别的迁移,同时对扩容规模和分表数量都有限制。总得来说,这些方案都不是十分的理想,多多少少都存在一些缺点,这也从一个侧面反映出了Sharding扩容的难度。
ID问题
一旦数据库被切分到多个物理结点上,我们将不能再依赖数据库自身的主键生成机制。一方面,某个分区数据库自生成的ID无法保证在全局上是唯一的;另一方面,应用程序在插入数据之前需要先获得ID,以便进行SQL路由
一些常见的主键生成策略
UUID
使用UUID作主键是最简单的方案,但是缺点也是非常明显的。由于UUID非常的长,除占用大量存储空间外,最主要的问题是在索引上,在建立索引和基于索引进行查询时都存在性能问题。
Twitter的分布式自增ID算法Snowflake
在分布式系统中,需要生成全局UID的场合还是比较多的,twitter的snowflake解决了这种需求,实现也还是很简单的,除去配置信息,核心代码就是毫秒级时间41位 机器ID 10位 毫秒内序列12位。
跨分片的排序分页
一般来讲,分页时需要按照指定字段进行排序。当排序字段就是分片字段的时候,我们通过分片规则可以比较容易定位到指定的分片,而当排序字段非分片字段的时候,情况就会变得比较复杂了。为了最终结果的准确性,我们需要在不同的分片节点中将数据进行排序并返回,并将不同分片返回的结果集进行汇总和再次排序,最后再返回给用户。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)