一个给定的视频序列,无论它每一层的SPS是否相同,都参考相同
的PS。VPS包含的信息有:
①多个子层和 *** 作点共享的语法元素
②会话所需的有关 *** 作点的关键信息,如档次、级别:
③其他不属于SPS的 *** 作点特性信息,例如与多层或子层相关的虚拟参考解码器( Hypothetical Reference Decoder,HRD)参数。对每个 *** 作点的关键信息的编码,不要求可变长编码,这样有利于减轻大多数网络组成单元的负担。H265/HEVC的扩展版本将会在当前PS中添加更多的语法元素,以使会话更加灵活高效并使编码码率具有更高的自
适应性。
SPS中所含的语法元素,其内容大致分为以下几个部分。
①图像格式的信息。 包括采样格式、图像分辨率、量化深度、解码图像是否需要裁剪输出以及相关的裁剪参数。
②编码参数信息。 包括编码块、变换块的最小尺寸和最大尺寸,帧内、帧间预测编码时变换块的最大划分深度,对4:4:4采样格式的三个通道分量是否单独编码,是否需要帧内强滤波,帧间预测过程中的某些限制条件[如非对称模式(AMP)的使用、时域MV预测的使用]是否使用量化矩阵,是否需要样点自适应补偿(SAO),是否采用PCM模式及在该模式下的相关编码参数。
③与参考图像相关的信息。 包括短期参考图像的设置,长期参考图像的使用和数目,长期参考图像的POC和其能否作为当前图像的参考图像。
④档次、层和级相关参数。 具体内容见38节。
⑤时域分级信息。 包括时域子层的最大数目,控制传输POC进位的参数,时域子层顺序标识开关,与子层相关的参数(如解码图像缓冲区的最大需求)。
⑥可视化可用性信息 ( Video Usability Information,wUI),用于表征视频格式等额外信息
⑦其他信息。 包括当前SPS引用的VPS编号、SPS标识号和SPS扩展信息。
PPS中所涉及的具体的语法元素,图像参数集的内容大致分为以下几个部分
①编码工具的可用性标志。 指明片头中一些工具是否可用。这些编码工具主要包括符号位隐藏、帧内预测受限、去方块滤波、PB图像的加权预测、环路滤波跨越片边界或者Tile边界、 Transform skip模式和Transquant bypass模式。
②量化过程相关句法元素。 包括每个Slce中QP初始值的设定以及计算每个CU的QP时所需的参数。此外,还有亮度量化参数的偏移量和由它导出的色度量化参数的偏移量等。有关量化过程中QP的具体计算。
③Tile相关句法元素。 包括Tile划分模式的可用性标志,以及在使用Tile划分模式时的一些参数,例如Tile的划分形式,总行数、总列数及第几行、第几列的标识等。
④去方块滤波相关句法元素。 包括去方块滤波的可用性标志以及使用去方块滤波时的一些控制信息和参数,如去方块滤波的默认补偿值β和tC
⑤片头中的控制信息。 包括当前片是否为依赖片、片头中是否有额外的 Slice头比特、图像解码顺序与输出顺序的先后关系以及 CABAC中确定上下文变量初始化表格时使用的方法等。
⑥其他编码一幅图像时可以共用的信息。 包括ID标识符、参考图像的数目和并行产生 merge候选列表的能力等。其中ID标识符用于标识当前活动的参数集,主要是当前活动的PPS的自身ID和其引用的SPS的ID。此外,PPS中还包括变换矩阵信息是否存在的标志位,这一变换矩阵信息若存在,便会对SPS中的该信息进行覆盖。
一幅图像可以被分割为一个或多个片( Slice),每个片的压缩数据都是独立的, Slice头信息无法通过前一个Sice的头信息推断得到。这就要求 Slice不能跨过它的边界来进行帧内或帧间预测,且在进行熵编码前需要进行初始化。但在进行 环路滤波 时,允许滤波器 跨越 Slice的边界 进行滤波。除了 Slice的边界可能受环路滤波影响外, Slice的解码过程可以不使用任何来自其他 Slice的影响,且有利于实现并行运算。 使用 Slice的主要目的是当数据丢失后能再次保证解码同步。
根据编码类型不同, Slice可分为以下几部分。
① I Slice: 该 Slice中所有CU的编码过程都使用帧内预测。
② P Slice: 在 I Slice的基础上,该 Slice中的CU还可以使用帧间预测测,每个预测块(PB)使用至多一个运动补偿预测信息。 P Slice只使用图像参考列表list0
③ B Slice: 在 P Slice的基础上, B Slice中的CU也可以使用帧间预测,但是每个PB可以使用至多两个运动补偿预测信息。 B Slice可以使用图像参考列表list0和list1。
H265/HEVC对H264/AVC的改进之处还在于Tile概念的提出。一幅图像不仅可以划分为若干个 Slice,也可以划分为若干个Tile。即从水平和垂直方向将一幅图像分割为若干个矩形区域,一个矩形区域就是一个Tile。每个Tile包含整数个CTU,其可以独立解码。划分Tile的主要目的是在增强并行处理能力的同时又不引入新的错误扩散。Tile提供比CTB更大程度的并行(在图像或者子图像的层面上),在使用时无须进行复杂的线程同步
Tile的划分并不要求水平和垂直边界均匀分布,可根据并行计算和差错控制的要求灵活掌握。通常情况下,每一个Tile中包含的CTU数据是近似相等的。在编码时,图像中的所有Tile按照扫描顺序进行处理,每个Tile中的CTU也按照扫描顺序进行编码。一个Tile包含的CTU个数和 Slice中的CTU个数互不影响。 这是3×3的划分,整幅图像被划分为9个Tile,每个Tile都为矩形。在同一幅图像中,可以同时存在某些 Slice中包含多个Tile和某些Tile中包含多个 Slice的情况。
在H265/HEVC中, Slice和Tle划分的目的都是为了进行独立解码但是二者的划分方式又有所不同。Tile形状基本上为矩形, Slice的形状则为条带状。 Slice由一系列的SS组成,一个SS由一系列的CTU组成Tile则直接由一系列的CTU组成。 Slice/ss和Tile之间必须遵守一些基本原则,每个 Slice/SS和Tile至少要满足以下两个条件之
①一个 Slice/ss中的所有CTU属于同一个Tile
②一个Tie中的所有CTU属于同一个 Slice/SS。
下面的例子将分别对同一幅图像中的 Slice和Tile划分做详细说明。
纽约大学sps毕业证上是会写继续教育学院的字眼的。SPS学院,全称为School of Professional Studies 。毕业证上会有SPS相关文字描述,和纽约大学毕业证不是相同的证书。sps发的offer都跟别的学院发的offer不一样,通知书上会明确地写School of Professional Studies
SPS学院不同于中国的成人教育学院,是美国的继续教育学院,但是也不完全等同于中国的成人教育学院。
扩展资料:
1、看包体。正品 PRADA 包包大多采用上好皮质制作,手感极佳,包体伴有淡淡的皮质香味,整体版型非常立体;而假货版型四方,皮质较硬,随之带有浓重的胶渍味。左真右假
2、看金属三角logo。正品PRADA的金属三角logo一定是在包体居中位置,围边的车线和三角logo的距离非常均称,三角logo上的字体是手工制作完成很有凹凸感;假货则走线混乱,字体上下排列不均。
正品
假货
3、看金属拉链正。真品拉链头分量较重,从任何角度观察都会有明显金属拉丝感,字体清晰;假货拉链头较轻,反光水波较强,质感很差。
真品
假货
4、看内衬LOGO。正品内衬标也是和三角标一样手工制作,有着一定的凹凸感;假货做工粗糙、边缘处会有明显金属毛茬、字体粗细不一。
真品
假货
5、看手柄边油及走线。手柄也是PRADA真伪判定的重要看点,正品在手柄粘合处理部分很完美,边油也会偏亮一些,走线均匀且不会出现断开问题;假货很少会在这个位置做出很好处理,边油毫无光亮感,走线稀松。
真品
假货
6、看侧钉按扣。真假区别较明显的在于刻印字体,假货字体和边缘点状刻印深浅不一。
真品
假货
7、看底钉。正品PRADA底钉形状饱满 、反光度不会出现水波状;假货粗糙、无光泽度、刻印字体模糊。
真品
假货
以上就是prada真假辨别方法。
普拉达prada太阳镜戴上视野很清晰,帅气又很酷,防紫外线好。那么普拉达太阳镜真假怎么辨别下面我为你提供prada太阳镜真假鉴别图。普拉达太阳镜真假辨别 一,检查PRADA太阳镜的型号和镜腿内侧的信息。
所有PRADA普拉达太阳镜的的型号只有两种开头格式:SPR或者SPS。SPR开头的是Prada太阳镜主线系列,走的是奢侈品风格路线。镜腿内侧信息如下图所示:
SPS开头的Prada的运动路线,也被称为“prada linea rossa” ,有更多运动感的设计元素。如下图所示:
所有PRADA墨镜的型号格式为:SPS或SPR+2个数字+1或2个字母,比如SPS 04F或SPR 52DS
注意:镜腿上的型号字体应该清晰不易脱落,即使用指甲刮也不会有问题;镜腿上的型号等信息应该和包装盒上的白色标签上信息一致,否则为假。下图为PRADA墨镜包装盒上的标签示例:
二,检查PRADA墨镜镜片上的序列号。
这一点是非常重要的,从2000年开始,普拉达PRADA开始在右侧的镜片上添加雕刻的序列号,如下图所示。注意序列号是雕刻,而不是印刷的,字体应清晰。如果你买到的是2000年以前的prada墨镜,镜片上不会有这样的序列号。
三,检查PRADA太阳镜的包装物是否正确。
新款的普拉达太阳镜包装应包含太阳镜、硬纸包装盒、眼镜盒、清洁布、普拉达信息指南、厂商的相关资讯指南以及真品卡各一份。由于PRADA墨镜的SPS和SPR两个系列多年来各有不同的包装设计,大家可以参考下面几个正品PRADA太阳镜的包装明细。
四,检查PRADA墨镜的鼻托。
有很多PRADA墨镜是不带有硅胶鼻托的;如果有硅胶鼻托,则鼻托上应有PRADA标志。
目前在国外,尤其是日本开展了较多用SPS制备新材料的研究,部分产品已投入生产。除了制备材料外,SPS还可进行材料连接,如连接MoSi2与石磨,ZrO2/Cermet/Ni等。
近几年,国内外用SPS制备新材料的研究主要集中在:陶瓷、金属陶瓷、金属间化合物,复合材料和功能材料等方面。其中研究最多的是功能材料,他包括热电材料 、磁性材料、功能梯度材料 、复合功能材料和纳米功能材料等。对SPS制备非晶合金、形状记忆合金 、金刚石等也作了尝试,取得了较好的结果。 功能梯度材料(FGM)的成分是梯度变化的,各层的烧结温度不同,利用传统的烧结方法难以一次烧成。利用CVD、PVD等方法制备梯度材料,成本很高,也很难实现工业化。采用阶梯状的石磨模具,由于模具上、下两端的电流密度不同,因此可以产生温度梯度。利用SPS在石磨模具中产生的梯度温度场,只需要几分钟就可以烧结好成分配比不同的梯度材料。目前SPS成功制备的梯度材料有:不锈钢/ZrO2;Ni/ZrO2;Al/高聚物;Al/植物纤维;PSZ/T等梯度材料。
在自蔓延燃烧合成(SHS)中,电场具有较大激活效应和作用,特别是场激活效应可以使以前不能合成的材料也能成功合成,扩大了成分范围,并能控制相的成分,不过得到的是多孔材料,还需要进一步加工提高致密度。利用类似于SHS电场激活作用的SPS技术,对陶瓷、复合材料和梯度材料的合成和致密化同时进行,可得到65nm的纳米晶,比SHS少了一道致密化工序。利用SPS可制备大尺寸的FGM,目前SPS制备的尺寸较大的FGM体系是ZrO2(3Y)/不锈钢圆盘,尺寸已达到100mm×17mm。
用普通烧结和热压WC粉末时必须加入添加剂,而SPS使烧结纯WC成为可能。用SPS制备的WC/Mo梯度材料的维氏硬度(HV)和断裂韧度分别达到了24Gpa和6Mpa·m1/2,大大减轻由于WC和Mo的热膨胀不匹配而导致热应力引起的开裂。 由于热点转换的高可靠性、无污染等特点,最近热电转换器引起了人们的极大兴趣,并研究了许多热电转换材料。经文献检索发现,在SPS制备功能材料的研究中,对热电材料的研究较多。
(1)热电材料的成分梯度化氏目前提高热点效率的有效途径之一。例如,成分梯度的βFeSi2就是一种比较有前途的热电材料,可用于200~900℃之间进行热电转换。βFeSi2没有毒性,在空气中有很好的抗氧化性,并且有较高的电导率和热电功率。热点材料的品质因数越高(Z=α2/kρ,其中Z是品质因数,α为Seebeck系数,k为热导系数,ρ为材料的电阻率),其热电转换效率也越高。试验表明,采用SPS制备的成分梯度的βFeSix(Si含量可变),比βFeSi2的热电性能大为提高。这方面的例子还有Cu/Al2O3/Cu[26],MgFeSi2[27], βZn4Sb3[28],钨硅化物[]29]等。
(2)用于热电制冷的传统半导体材料不仅强度和耐久性差,而且主要采用单相生长法制备,生产周期长、成本高。近年来有些厂家为了解决这个问题,采用烧结法生产半导体致冷材料,虽改善了机械强度和提高了材料使用率,但是热电性能远远达不到单晶半导体的性能,现在采用SPS生产半导体致冷材料,在几分钟内就可制备出完整的半导体材料,而晶体生长却要十几个小时。SPS制备半导体热电材料的优点是,可直接加工成圆片,不需要单向生长法那样的切割加工,节约了材料,提高了生产效率。
热压和冷压-烧结的半导体性能低于晶体生长法制备的性能。现用于热电致冷的半导体材料的主要成分是Bi,Sb,Te和Se,目前最高的Z值为30×10/K,而用SPS制备的热电半导体的Z值已达到29~30×10/K,几乎等于单晶半导体的性能。表2是SPS和其他方法生产BiTe材料的比较。 用SPS烧结铁电陶瓷PbTiO3时,在900~1000℃下烧结1~3min,烧结后平均颗粒尺寸<1μm,相对密度超过98%。由于陶瓷中孔洞较少,因此在101~106HZ之间介电常数基本不随频率而变化。
用SPS制备铁电材料Bi4Ti3O12陶瓷时,在烧结体晶粒伸长和粗化的同时,陶瓷迅速致密化。用SPS容易得到晶粒取向度好的试样,可观察到晶粒择优取向的Bi4Ti3O12陶瓷的电性能有强烈的各向异性。
用SPS制备铁电Li置换IIVI半导体ZnO陶瓷,使铁电相变温度Tc提高到470K,而以前冷压烧结陶瓷只有330K[34]。 用SPS烧结Nd Fe B磁性合金,若在较高温度下烧结,可以得到高的致密度,但烧结温度过高会导致出现温度过高会导致出现α相和晶粒长大,磁性能恶化。若在较低温度下烧结,虽能保持良好的磁性能,但粉末却不能完全压实,因此要详细研究密度与性能的关系 。
SPS在烧结磁性材料时具有烧结温度低、保温时间短的工艺优点。Nd Fe Co V B 在650℃下保温5min,即可烧结成接近完全密实的块状磁体,没有发现晶粒长大。用SPS制备的865Fe6Si4Al35Ni和MgFe2O4的复合材料(850℃,130MPa),具有高的饱和磁化强度Bs=12T和高的电阻率ρ=1×10Ω·m。
以前用快速凝固法制备的软磁合金薄带,虽已达到几十纳米的细小晶粒组织,但是不能制备成合金块体,应用受到限制。而现在采用SPS制备的块体磁性合金的磁性能已达到非晶和纳米晶组织带材的软磁性能[3]。 致密纳米材料的制备越来越受到重视。利用传统的热压烧结和热等静压烧结等方法来制备纳米材料时,很难保证能同时达到纳米尺寸的晶粒和完全致密的要求。利用SPS技术,由于加热速度快,烧结时间短,可显著抑制晶粒粗化。例如:用平均粒度为5μm的TiN粉经SPS烧结(1963K,196~382MPa,烧结5min),可得到平均晶粒65nm的TiN密实体。文献中引用有关实例说明了SPS烧结中晶粒长大受到最大限度的抑制,所制得烧结体无疏松和明显的晶粒长大。
在SPS烧结时,虽然所加压力较小,但是除了压力的作用会导致活化能力Q降低外,由于存在放电的作用,也会使晶粒得到活化而使Q值进一步减小,从而会促进晶粒长大,因此从这方面来说,用SPS烧结制备纳米材料有一定的困难。
但是实际上已有成功制备平均粒度为65nm的TiN密实体的实例。在文献中,非晶粉末用SPS烧结制备出20~30nm的Fe90Zr7B3纳米磁性材料。另外,还已发现晶粒随SPS烧结温度变化比较缓慢,因此SPS制备纳米材料的机理和对晶粒长大的影响还需要做进一步的研究。 在非晶合金的制备中,要选择合金成分以保证合金具有极低的非晶形成临界冷却速度,从而获得极高的非晶形成能力。在制备工艺方面主要有金属浇铸法和水淬法,其关键是快速冷却和控制非均匀形核。由于制备非晶合金粉末的技术相对成熟,因此多年来,采用非晶粉末在低于其晶化温度下进行温挤压、温轧、冲击(爆炸)固化和等静压烧结等方法来制备大块非晶合金,但存在不少技术难题,如非晶粉末的硬度总高于静态粉末,因而压制性能欠佳,其综合性能与旋淬法制备的非晶薄带相近,难以作为高强度结构材料使用。可见用普通粉末冶金法制备大块非晶材料存在不少技术难题。
SPS作为新一代烧结技术有望在这方面取得进展,利用SPS烧结由机械合金化制取的非晶Al基粉末得到了块状圆片试样(10mm×2mm),磁非晶合金是在375MPa下503K时保温20min制备的,含有非晶相和结晶相以及残余的Sn相。其非晶相的结晶温度是533K。用脉冲电流在423K和500MPa下制备了Mg80Ni10Y5B5块状非晶合金,经分析其中主要是非晶相。非晶Mg合金比A291D合金和纯镁有较高的腐蚀电位和较低的腐蚀电流密度,非晶化改善了镁合金的抗腐蚀抗力。从实践来看,可以采用SPS烧结法制备块状非晶合金。因此利用先进的SPS技术进行大块非晶合金的制备研究很有必要。
解压出来放到一个地方一会用
然后在控制面板里面找到添加删除程序
添加WINDOWS组件然后一直往下
记得该打勾的打勾
然后提示你放入安装盘
直接找到你放包的地方
可能多次提醒你找那个包
装好就OK
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)