arctanx当x=1时,怎么计算

arctanx当x=1时,怎么计算,第1张

当x=1时有arctan1等于kπ+π/4(k为整数)。

解:因为tanx与arctanx互为反函数,那么令y=arctan1,

则y=tanx=arctan1

那么可解得y=π/4+kπ,其中k为整数。

扩展资料

反三角函数的限制条件

1、为了保证函数与自变量之间的单值对应,确定的区间必须具有单调性;

2、函数在这个区间最好是连续的(这里之所以说最好,是因为反正割和反余割函数是间断的);

3、为了使研究方便,常要求所选择的区间包含0到π/2的角;

4、所确定的区间上的函数值域应与整函数的定义域相同。这样确定的反三角函数就是单值的,为了与上面多值的反三角函数相区别,在记法上常将Arc中的A改记为a,例如单值的反正弦函数记为arcsin x。

参考资料来源:百度百科—反三角函数

设x=tany是直接函数,y属于(-pi/2,pi/2)则y=arctanx是它的反函数函数x=tany在(-pi/2,pi/2)内单调可导

(tany)'=sec^2y

有反函数求导公式dy/dx=1/(dx/dy)得

(arctanx)'=1/(tany)'=1/sec^2y

又sec^2y=1+tan^2y=1+x^2

所以(arctanx)'=1/(1+x^2)

又arccotx=pi/2-arctanx

将(arctanx)'=1/(1+x^2)代入即可得到(arccotx)'=-1/(1+x^2)

三角函数的反函数不是单值函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数 y=x 对称。欧拉提出反三角函数的概念,并且首先使用了“arc+函数名”的形式表示反三角函数。

扩展资料:

为限制反三角函数为单值函数,将反正弦函数的值y限在-π/2≤y≤π/2,将y作为反正弦函数的主值,记为y=arcsin x;相应地,反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2<y<π/2;反余切函数y=arccot x的主值限在0<y<π。

正弦值在  随角度增大(减小)而增大(减小);

在  随角度增大(减小)而减小(增大);

余弦值在  随角度增大(减小)而增大(减小);

在  随角度增大(减小)而减小(增大);

正切值在  随角度增大(减小)而增大(减小);

余切值在  随角度增大(减小)而减小(增大)。

注:以上其他情况可类推,参考第五项:几何性质。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12967648.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-29
下一篇 2023-05-29

发表评论

登录后才能评论

评论列表(0条)

保存