1 正向脉冲伺服正转,反向脉冲伺服反转
2 脉冲让伺服旋转,DO输出决定伺服方向。
了解以上知识点,还需要搞清楚以下三点:
1、变频器可以使交流电机加、减速运行;
2、PLC只是个控制器,它只能通过变频器实现交流电机的加减速!
3、PLC自己不能驱动电机!
如果使用模拟量控制伺服,那么你可以使用正负模拟量进行正反转的控制。
如果使用通讯控制,那么直接发指令。如果使用脉冲来控制伺服,那么你有两种方式:
1 正向脉冲伺服正转,反向脉冲伺服反转
2 脉冲让伺服旋转,DO输出决定伺服方向。
如果使用模拟量控制伺服,那么你可以使用正负模拟量进行正反转的控制。
如果使用通讯控制,那么直接发指令。
程序上,靠这个方式:
1可以直接输入位置令其正,反转
2JOG命令其正反转
具体的 *** 作过程简述:
plc发脉冲 控驱动器 要求伺服电机走梯形路线 先以V1速度运行T1时间,到达最大速度V2再以V2运行T2时间然后在T1的时间内减速到V1,在以V1的速度运行T3时间 然后这样循环运行 总时间T1T2 T1 T3 内电机运转正好A圈驱动减速比为A的轴 ,此轴也就运行1圈。
1、转矩控制:转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小。
2、位置控制:位置控制模式一般是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。
伺服电机一般为三个环控制,三环就是3个闭环负反馈PID调节系统。最内的PID环就是电流环,此环完全在伺服驱动器内部进行,通过霍尔装置检测驱动器给电机的各相的输出电流,负反馈给电流的设定进行PID调节,从而达到输出电流尽量接近等于设定电流,电流环就是控制电机转矩的,所以在转矩模式下驱动器的运算最小,动态响应最快。
第2环是速度环,通过检测的电机编码器的信号来进行负反馈PID调节,它的环内PID输出直接就是电流环的设定,所以速度环控制时就包含了速度环和电流环,换句话说任何模式都必须使用电流环,电流环是控制的根本,在速度和位置控制的同时系统实际也在进行电流(转矩)的控制以达到对速度和位置的相应控制。
第3环是位置环,它是最外环,可以在驱动器和电机编码器间构建也可以在外部控制器和电机编码器或最终负载间构建,要根据实际情况来定。由于位置控制环内部输出就是速度环的设定,位置控制模式下系统进行了所有3个环的运算,此时的系统运算量最大,动态响应速度也最慢。
如果是速度控制模式,发送的是正负10伏模拟量信号,电压值越大,那转速越快。
你好很高兴为你解答,信捷伺服电机调节距离调整首先按M键面板显示PR 000时再按S键调节Pr000到Pr313再按S键调节参数值,参数值范围为(0~10000),单位ms,假如Vc代表速度的目标值,那么减速时间(ms)的计算公式=Vc/1000×Pr313×1ms。二、要用速度模式,如果位置模式要在定位模块那边设置。三、一般来说,工业机器人的的控制器给出的位置曲线都是考虑了加减速的那么,在伺服驱动器侧,一般的加/减速时间均设为0伺服驱动里的加减速时间这个参数一般用于中低端PLC的脉冲输出用于位置控制的时候,因为这个时候根据脉冲算出的速度指令是阶跃,加速度(对应电机的扭矩输出)指令是无限大。所以需要自己做个斜坡,将阶跃信号平滑一下。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)