如何求回归方程的参数?

如何求回归方程的参数?,第1张

(1)用所给样本求出两个相关变量的(算术)平均值: x_=(x1+x2+x3++xn)/n y_=(y1+y2+y3++yn)/n ;(2)分别计算分子和分母:(两个公式任选其一) 分子=(x1y1+x2y2+x3y3++xnyn)-nx_Y_ 分母=(x1^2+x2^2+x3^2++xn^2)-nx_^2 3)来计算 b。

:线性回归方程是利用数理统计中的回归分析,来确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法之一。  线性回归也是回归分析中第一种经过严格研究并在实际应用中广泛使用的类型。按自变量个数可分为一元线性回归分析方程和多元线性回归分析方程。

b=分子  /  分母  用最小二乘法估计参数b,设服从正态分布,分别求对a、b的偏导数并令它们等于零,得方程组解。其中 ,且为观测值的样本方差线性方程称为关于的线性回归方程,称为回归系数,对应的直线称为回归直线顺便指出,将来还需用到,其中为观测值的样本方差。

     
     

线性回归方程模型:1、线性回归模型经常用最小二乘逼近来拟合,但他们也可能用别的方法来拟合,比如用最小化“拟合缺陷”在一些其他规范里(比如最小绝对误差回归),或者在回归中最小化最小二乘损失函数的乘法。2、相反,最小二乘逼近可以用来拟合那些非线性的模型。因此,尽管最小二乘法和线性模型是紧密相连的,但他们是不能划等号的。

     
     

线性回归方程的求法:

第一:用所给样本求出两个相关变量的(算术)平均值

第二:分别计算分子和分母

第三:计算b:b=分子/分母用最小二乘法估计参数b,设服从正态分布,分别求对a、b的偏导数并令它们等于零。先求x,y的平均值X,Y。再用公式代入求解:b=(x1y1+x2y2+xnyn-nXY)/(x1+x2+xn-nX)。后把x,y的平均数X,Y代入a=Y-bX。求出a并代入总的公式y=bx+a得到线性回归方程(X为xi的平均数,Y为yi的平均数)

     
     

个人建议:线性回归是利用数理统计中的回归分析来确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法,是变量间的相关关系中最重要的一部分,主要考查概率与统计知识,考察学生的阅读能力、数据处理能力及运算能力,题目难度中等,应用广泛

Logistic回归的方程是y(i)=σ(wTx+b),其中 σ(z(i))=11+e−z(i)。

logistic回归又称logistic回归分析,是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断,经济预测等领域。例如,探讨引发疾病的危险因素,并根据危险因素预测疾病发生的概率等。

logistic回归与多重线性回归实际上有很多相同之处,最大的区别就在于他们的因变量不同,其他的基本都差不多,正是因为如此,这两种回归可以归于同一个家族,即广义线性模型(generalized linear model)。

这一家族中的模型形式基本上都差不多,不同的就是因变量不同,如果是连续的,就是多重线性回归,如果是二项分布,就是logistic回归,如果是poisson分布,就是poisson回归,如果是负二项分布,就是负二项回归,等等。只要注意区分它们的因变量就可以了。

y=bx+a
回归分析
regression
analysis
回归分析是处理多变量间相关关系的一种数学方法。相关关系不同于函数关系,后者反映变量间的严格依存性,而前者则表现出一定程度的波动性或随机性,对自变量的每一取值,因变量可以有多个数值与之相对应。在统计上研究相关关系可以运用回归分析和相关分析(correlation
analysis)。当自变量为非随机变量、因变量为随机变量时,分析它们的关系称回归分析;当两者都是随机变量时,称为相关分析。回归分析和相关分析往往不加区分。广义上说,相关分析包括回归分析,但严格地说。两者是有区别的。具有相关关系的两个变量ξ和η,它们之间既存在着密切的关系,又不能由一个变量的数值精确地求出另一变量的值。通常选定ξ=x时η的数学期望作为对应ξ=x时η的代表值,因为它反映ξ=x条件下η取值的平均水平。这样的对应关系称为回归关系。根据回归分析可以建立变量间的数学表达式,称为回归方程。回归方程反映自变量在固定条件下因变量的平均状态变化情况。相关分析是以某一指标来度量回归方程所描述的各个变量间关系的密切程度。相关分析常用回归分析来补充,两者相辅相成。若通过相关分析显示出变量间关系非常密切,则通过所建立的回归方程可获得相当准确的取值。通过日归分析可以解决以下问题:
1.可建立交量间的数学表达式――通常称为经验公式。
2.利用概率统计基础知识进行分析,从而可以判断所建立的经验公式的有效性。
3.进行因素分析,确定影响某一变量的若干变量(因素)中,何者为主要,何者为次要,以及它们之间的关系。
具有相关关系的变量之间虽然具有某种不确定性,但是,通过对现象的不断观察可以探索出它们之间的统计规律,这类统计规律称为回归关系。有关回归关系的理论、计算和分析称为回归分析。
回归分析方法被广泛地用于解释市场占有率、销售额、品牌偏好及市场营销效果。把两个或两个以上定距或定比例的数量关系用函数形势表示出来,就是回归分析要解决的问题。回归分析是一种非常有用且灵活的分析方法,其作用主要表现在以下几个方面:
(1)
判别自变量是否能解释因变量的显著变化----关系是否存在;
(2)
判别自变量能够在多大程度上解释因变量----关系的强度;
(3)
判别关系的结构或形式----反映因变量和自变量之间相关的数学表达式;
(4)
预测自变量的值;
(5)
当评价一个特殊变量或一组变量对因变量的贡献时,对其自变量进行控制。
回归分析可以分为简单线性回归分析和多元线性回归分析。
(一)
简单线性回归分析
如果发现因变量y和自变量x之间存在高度的正相关,可以确定一条直线的方程,使得所有的数据点尽可能接近这条拟合的直线。简单回归分析的模型可以用以下方程表示:
y
=
a
+
bx
其中:y为因变量,a为截距,b为相关系数,x为自变量。
(二)
多元线性回归分析
多元线性回归是简单线性回归的推广,指的是多个因变量对多个自变量的回归。其中最常用的是只限于一个因变量但有多个自变量的情况,也叫多重回归。多重回归的一般形式如下:
y
=
a
+
b1x1
+
b2x2
+
b3x3
+……+
bkxk
a代表截距,
b1,b2,b3,……,bk为回归系数。

logistics回归分析列表如下:
1、回归方程结果:列出回归方程中自变量和因变量的系数、标准误、t值、p值等统计值,并解释每个系数的含义和影响。
2、等价赔率结果:列出每个自变量与结果之间的等价赔率,并解释等价赔率的含义。
3、模型拟合效果:列出似然比、卡方、AIC、BIC等统计量,说明模型的拟合效果,以及是否可以通过减少某些自变量来提高拟合效果。
4、残差分析结果:列出残差的散点图、QQ图等统计图表,评估残差是否符合正态分布和独立同分布等假设。
5、模型验证效果:列出模型的验证预测效果,例如ROC曲线、准确率、召回率等指标,并说明模型预测效果的优缺点和应用范围。

你这个能不能给明确点啊回归分析 regression analysis回归分析是处理多变量间相关关系的一种数学方法。相关关系不同于函数关系,后者反映变量间的严格依存性,而前者则表现出一定程度的波动性或随机性,对自变量的每一取值,因变量可以有多个数值与之相对应。在统计上研究相关关系可以运用回归分析和相关分析(correlation analysis)。当自变量为非随机变量、因变量为随机变量时,分析它们的关系称回归分析;当两者都是随机变量时,称为相关分析。回归分析和相关分析往往不加区分。广义上说,相关分析包括回归分析,但严格地说。两者是有区别的。具有相关关系的两个变量ξ和η,它们之间既存在着密切的关系,又不能由一个变量的数值精确地求出另一变量的值。通常选定ξ=x时η的数学期望作为对应ξ=x时η的代表值,因为它反映ξ=x条件下η取值的平均水平。这样的对应关系称为回归关系。根据回归分析可以建立变量间的数学表达式,称为回归方程。回归方程反映自变量在固定条件下因变量的平均状态变化情况。相关分析是以某一指标来度量回归方程所描述的各个变量间关系的密切程度。相关分析常用回归分析来补充,两者相辅相成。若通过相关分析显示出变量间关系非常密切,则通过所建立的回归方程可获得相当准确的取值。通过日归分析可以解决以下问题: 1.可建立交量间的数学表达式――通常称为经验公式。 2.利用概率统计基础知识进行分析,从而可以判断所建立的经验公式的有效性。 3.进行因素分析,确定影响某一变量的若干变量(因素)中,何者为主要,何者为次要,以及它们之间的关系。具有相关关系的变量之间虽然具有某种不确定性,但是,通过对现象的不断观察可以探索出它们之间的统计规律,这类统计规律称为回归关系。有关回归关系的理论、计算和分析称为回归分析。回归分析方法被广泛地用于解释市场占有率、销售额、品牌偏好及市场营销效果。把两个或两个以上定距或定比例的数量关系用函数形势表示出来,就是回归分析要解决的问题。回归分析是一种非常有用且灵活的分析方法,其作用主要表现在以下几个方面:(1) 判别自变量是否能解释因变量的显著变化----关系是否存在;(2) 判别自变量能够在多大程度上解释因变量----关系的强度;(3) 判别关系的结构或形式----反映因变量和自变量之间相关的数学表达式;(4) 预测自变量的值;(5) 当评价一个特殊变量或一组变量对因变量的贡献时,对其自变量进行控制。回归分析可以分为简单线性回归分析和多元线性回归分析。(一) 简单线性回归分析如果发现因变量Y和自变量X之间存在高度的正相关,可以确定一条直线的方程,使得所有的数据点尽可能接近这条拟合的直线。简单回归分析的模型可以用以下方程表示:Y = a + bx其中:Y为因变量,a为截距,b为相关系数,x为自变量。(二) 多元线性回归分析多元线性回归是简单线性回归的推广,指的是多个因变量对多个自变量的回归。其中最常用的是只限于一个因变量但有多个自变量的情况,也叫多重回归。多重回归的一般形式如下:a代表截距, b1,b2,b3,……,bk为回归系数。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/13030443.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-29
下一篇 2023-05-29

发表评论

登录后才能评论

评论列表(0条)

保存