求和公式:
求和公式:Sn=na1(q=1)
Sn=a1(1-q^n)/(1-q)
=(a1-a1q^n)/(1-q)
=(a1-anq)/(1-q)。
求和公式用文字来描述就是:Sn=首项(1-公比的n次方)/1-公比(公比≠1)如果公比q=1,则等比数列中每项都相等。
简介公式
一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)。注:q=1时,an为常数列(n为下标)。
等比数列通式若通项公式变形为an=a1/qq^n(n∈N),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/qq^x上的一群孤立的点。(1)等比数列(Geometric Sequences)的通项公式是:an=a1×q^(n-1)(a1≠0,q≠0)。
等比数列求和公式:
(1)q≠1时,Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q)
(2)q=1时,Sn=na1。(a1为首项,an为第n项,q为等比)
Sn=a1(1-q^n)/(1-q)的推导过程:
Sn=a1+a2+……+an
qSn=a1q+a2q+……+anq=a2+a3+……+a(n+1)
Sn-qSn=a1-a(n+1)=a1-a1q^n
(1-q)Sn=a1(1-q^n)
Sn=a1(1-q^n)/(1-q)
扩展资料
等比数列在生活中也是常常运用的。如:银行有一种支付利息的方式——复利。即把前一期的利息和本金加在一起算作本金,在计算下一期的利息,也就是人们通常说的“利滚利”。按照复利计算本利和的公式:本利和=本金(1+利率)^存期。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)