运算法则如下:
1、am+n=am∙an。
2、amn=(am)n。
3、a1/n=n√a(4)am-n=am/an。
注意:在指数函数的定义表达式中,在ax前的系数必须是数1,自变量x必须在指数的位置上,且不能是x的其他表达式,否则,就不是指数函数。
指数函数是重要的基本初等函数之一。一般地,y=ax函数(a为常数且以a\u003e0,a≠1)叫做指数函数,函数的定义域是 R 。
相关信息:
指数函数是数学中重要的函数。应用到值e上的这个函数写为exp(x)。还可以等价的写为e,这里的e是数学常数,就是自然对数的底数,近似等于 2718281828,还称为欧拉数。
a一定大于零,指数函数当a>1时,指数函数对于x的负数值非常平坦,对于x的正数值迅速攀升,在 x等于 0 的时候y等于 1。当0<a<1时,指数函数对于x的负数值迅速攀升,对于x的正数值非常平坦,在x等于 0 的时候y等于 1。在x处的切线的斜率等于此处y的值乘上lna。即由导数知识:d(a^x)/dx=a^xln(a)。
作为实数变量x的函数,y=e^x 的图像总是正的(在x轴之上)并递增(从左向右看)。它永不触及x轴,尽管它可以任意程度的靠近它(所以,x轴是这个图像的水平渐近线。它的反函数是自然对数ln(x),它定义在所有正数x上。
指数:加减没什么好说的,和多项式是一样的。乘除法:分别是指数的相加和相减,例如e^xe^2x=e^(x+2x)=e^3x,除法则为相减。
对数:其实对数和指数是逆着来的,指数乘法是指数相加,对数加法则就是相乘,减法则为相除。例如ln
x+ln
2x=ln(x2x)=ln(2x^2)
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)