函数定义域的求法

函数定义域的求法,第1张

函数定义域的求法:(1)分式的分母不能为零;(2)偶次方根的内部必须非负即大于等于零;(3)对数的真数为正,对数的底数大于零且不等于1;(4)x 0 中,x≠0。

求解方法

组合函数

由若干个基本函数通过四则运算形成的函数,其定义域为使得每一部分都有意义的公共部分。

原则:(1)分式的分母不能为零;(2)偶次方根的内部必须非负即大于等于零;(3)对数的真数为正,对数的底数大于零且不等于1;(4)x 0 中,x≠0。

复合函数

若y=发(u),u=g(x),则y=f[g(x)]就叫做f和g的复合函数。其中y=f(U)叫做外函数,u=g(x)叫做内函数。

例如:(1)已知y=f(x)的定义域D 1 ,求y=f[g(x)]的定义域D 2 。

解法:解不等式:g(x)∈D 1

(2)已知y=f[g(x)]的定义域D 1 ,求y=f(x)的定义域D 2 。

解法:令u=g(x),x∈D 1 ,求函数g(x)的值域。

求函数定义域一般原则

①如果为整式,其定义域为实数集;

②如果为分时,其定义域是是分母不为0的实数集合;

③如果是二次根式(偶次根式),其定义域是使根号内的式子不小于0的实数集合;

④如果是由以上几个部分的数学式子构成的,其定义域是使各个式子都有意义的实数集合。

函数定义域的求解可以分为两大类型,一类是已经知道函数解析式求定义域,即一般函数或者具体函数的定义域,另一类是不知道函数的解析式求定义域,即抽象函数的定义域。下面我整理了初中求定义域的方法,供大家参考。

一般函数的定义域求法

1、分式的分母不等于零;

2、偶次方根的被开方数大于等于零;

3、对数的真数大于零;

4、指数函数和对数函数的底数大于零且不等于1;

5、三角函数正切函数中;余切函数中;

6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。

求抽象函数的定义域

(1)已知原函数f(x)的定义域为(a,b),求复合函数f[g(x)]的定义域:

只需解不等式a<g(x)<b,不等式的解集即为所求函数的定义域。

函数的定义域就是自变量的取值范围,复合函数f[g(x)]的自变量是x,所以求的就是x的范围,而复合函数f[g(x)]是把g(x)当作f(x)的自变量整体代入f(x)的,所以g(x)也必须在f(x)的定义域(a,b)内,即a<g(x)<b。

(2)已知复合函数f[g(x)]的定义域为(a,b),求原函数f(x)的定义域:

只需根据a<x<b求出函数g(x)的值域,即得原函数f(x)的定义域。

这种情况是第一种情况反过来的,也就是原来复合函数f[g(x)]的自变量是g(x)中的x,而要求函数f(x)的定义域,相当于把复合函数f[g(x)]进行了一次换元,把g(x)整体换成了新的变量,所以函数f(x)的定义域的就是g(x)的值域。

初中定义域常见的考法

(1)给出函数解析式的:函数的定义域是使解析式有意义的自变量的取值集合;

(2)实际问题:函数的定义域的求解除要考虑解析式有意义外,还应考虑使实际问题有意义;(3)已知f(x)的定义域求f[g(x)]的定义域或已知f[g(x)]的定义域求f(x)的定义域。①掌握基本初等函数(尤其是分式函数、无理函数、对数函数、三角函数)的定义域;②若已知f(x)的定义域a,b,其复合函数f[g(x)]的定义域应由a<g(x)<b解出。

定义域是函数y=f(x)中的自变量x的范围。
求函数的定义域需要从这几个方面入手:
(1),分母不为零 (2)偶次根式的被开方数非负。
(3),对数中的真数部分大于0。
(4),指数、对数的底数大于0,且不等于1
(5)。y=tanx中x≠kπ+π/2,
y=cotx中x≠kπ等等。
值域是函数y=f(x)中y的取值范围。
常用的求值域的方法:
(1)化归法;(2)图象法(数形结合),
(3)函数单调性法,
(4)配方法,(5)换元法,(6)反函数法(逆求法),(7)判别式法,(8)复合函数法,(9)三角代换法,(10)基本不等式法等

求函数的定义域需要从这几个方面入手:
(1)分母不为零。
(2)偶次根式的被开方数非负。
(3)对数中的真数部分大于0。
(4)指数、对数的底数大于0,且不等于1。
(5)y=tanx中x≠kπ+π/2。
不同函数的定义域求法不同,举例:y=√(x+1)的定义域。
因为√(x+1)是偶次根式,所以(x+1)≥0,即x≥-1。

扩展资料:


求函数定义域主要包括三种题型:抽象函数,一般函数,函数应用题。含义是指自变量 x的取值范围。
为了便于理解定义域的要求。出题的时候,往往用函数g(x)来代替x的位置,
比如:g(x)=sinx,
定义域为一切实数,
但是放在了分母,就随分母的定义域走,1/sinx,
sinx≠0,求x的取值范围(定义域)。
放在了根号里,就随着根号的定义域走,√sinx,
sinx≥0。再复杂一些的,如:1/√sinx,g(x)既在根号里,又做分母,就用两个函数的定义域来约束,sinx≥0和sinx≠0,满足这两个条件的公共区域就是sinx>0。
更复杂的是把不同的函数经过加、减、乘、除、开方、指数、对数、三角函数等运算放在一起,要你求定义域。遇到这种情况,就把函数分为几个部分,化整为零,一段一段地列出函数的定义域,再来求解。
解题后,千万要注意,把所求的结果,在数轴上画一下,几段定义域所求的值,一定在这些定义域相互包含的区域里,不能相互包含的x值要舍去。这样,才算完成了定义域的求解。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/13174551.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-06-16
下一篇 2023-06-16

发表评论

登录后才能评论

评论列表(0条)

保存