如何开方根

如何开方根,第1张

1、整数开平方步骤:

(1)将被开方数从右向左每隔2位用撇号分开;

(2)从左边第一段求得算数平方根的第一位数字;

(3)从第一段减去这个第一位数字的平方,再把被开方数的第二段写下来,作为第一个余数

(4)把所得的第一位数字乘以20,去除第一个余数,所得的商的整数部分作为试商(如果这个整数部分大于或等于10,就改用9左试商,如果第一个余数小于第一位数字乘以20的积,则得试商0);

(5)把第一位数字的20倍加上试商的和,乘以这个试商,如果所得的积大于余数时,就要把试商减1再试,直到积小于或等于余数为止,这个试商就是算数平方根的第二位数字;

(6)用同样方法继续求算数平方根的其他各位数字。

2、小数部分开平方法:

求小数平方根,也可以用整数开平方的一般方法来计算,但是在用撇号分段的时候有所不同,分段时要从小数点向右每隔2段用撇号分开,如果小数点后的最后一段只有一位,就填上一个0补成2位,然后用整数部分开平方的步骤计算。

扩展资料:


关于任意数开任意次方的公式:设被开方数为A,开次方数为B。C为变量 

首次C取值为1,带入A,B常量计算结果,并用计算结果值替换公式中的变量 C。再次计算结果,再次替换,当C=公式计算结果值,此时C即为根。循环步骤受开方数字长度影响,此法也可笔算进行。采用的是牛顿迭代法。

且 A、B 可为小数,分数,负数,此法为逐次逼近法。可简单的实现编程。但是注意:不能计算负数开偶数次方。

下面为:代入法

1、把被开方的整数部分从个位起向左每隔n位为一节,用撇号分开;

2、根据左边第一节里的数,求得开n次算术根的最高位上的数,假设这个数为a;

3、从第一节的数减去求得的最高位上数的n次方,在它们的差的右边写上第二节数作为第一个余数;

4、用第一个余数除以  ,所得的整数部分试商(如果这个最大整数大于或等于10,就用9做试商);

5、设试商为b。如果  小于或等于余数,这个试商就是n次算术根的第二位;如果 大于余数,就把试商逐次减1再试,直到  小于或等于余数为止。

6、用同样的方法,继续求n次算术跟的其它各位上的数(如果已经算了k位数数字,则a要取为全部k位数字)。公式: 

参考资料:

百度百科——开方

上述笔算开方方法是我们大多数人上学时课本附录给出的方法,实际中运算中太麻烦了。我们可以采取下面办法,实际计算中不怕某一步算错!!!而上面方法就不行。
比如136161这个数字,首先我们找到一个和136161的平方根比较接近的数,任选一个,比方说300到400间的任何一个数,这里选350,作为代表。
我们计算05(350+136161/350)得到3695
然后我们再计算05(3695+136161/3695)得到3690003,我们发现3695和3690003相差无几,并且,369^2末尾数字为1。我们有理由断定369^2=136161
一般来说能够开方开的尽的,用上述方法算一两次基本结果就出来了。再举个例子:计算469225的平方根。首先我们发现600^2<469225<700^2,我们可以挑选650作为第一次计算的数。即算
05(650+469225/650)得到6859。而685附近只有685^2末尾数字是5,因此685^2=469225
对于那些开方开不尽的数,用这种方法算两三次精度就很可观了,一般达到小数点后好几位。
实际中这种算法也是计算机用于开方的算法

开方:求一个数的方根的运算,为乘方的逆运算。
笔算开方(以二次方为例):
1、把被开方的整数部分从个位起向左每隔2位为一段,用撇号分开(例如625 则写成 6’25;
2、根据左边第一段里的数(6),计得开2次算术根的最高位上的数(商)应该是2(2×2=4 ,小于6接近6);
3、从第一段的数(6)减去最高位数(商)2的2次方(即6-4),差为2,在2右边写上第二段数作为第一个余数,第二段为25,即余数为225;
4、用第一段求得的“商”2乘以20(即40)对余数225进行试商(即225÷40),应该是5(5×40=200,小于225,接近225);
5、用商(2)乘以20再加试商(5),再乘以试商(5),
即〔(2×20)+5〕×5=225,它等于余数,所以5应为第二位商(如果小于余数,则再按上面方法往下计算,为小数点后的“商”)。
求得625的开平方(即二次方)等于25
>1.从个位起向左每隔两位为一节,若带有小数从小数点起向右每隔两位一节,用“,”号将各节分开;
2.求不大于左边第一节数的完全平方数,为“商”;
3.从左边第一节数里减去求得的商,在它们的差的右边写上第二节数作为第一个余数;
4.把商乘以20,试除第一个余数,所得的最大整数作试商(如果这个最大整数大于或等于10,就用9或8作试商);
5.用商乘以20加上试商再乘以试商。如果所得的积小于或等于余数,就把这个试商写在商后面,作为新商;如果所得的积大于余数,就把试商逐次减小再试,直到积小于或等于余数为止;
6.用同样的方法,继续求。
这种办法ms更适用于人+计算器,单用计算机做很繁琐。

1、将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开(竖式中的11’56),分成几段,表示所求平方根是几位数;

2、根据左边第一段里的数,求得平方根的最高位上的数(竖式中的3);

3、从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数(竖式中的256);

4、把求得的最高位数乘以20去试除第一个余数,所得的最大整数作为试商(20×3除256,所得的最大整数是 4,即试商是4);

5、用所求的平方根的最高位数的20倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试(竖式中(20×3+4)×4=256,说明试商4就是平方根的第二位数);

6、用同样的方法,继续求平方根的其他各位上的数。

7、如遇开不尽的情况,可根据所要求的精确度求出它的近似值.例如求 的近似值(精确到001),可列出上面右边的竖式,并根据这个竖式得到。

8、笔算开平方运算较繁,在实际中直接应用较少,但用这个方法可求出一个数的平方根的具有任意精确度的近似值。

1.从个位起向左每隔两位为一节,若带有小数从小数点起向右每隔两位一节,用“,”号将各节分开;
2.求不大于左边第一节数的完全平方数,为“商”;
3.从左边第一节数里减去求得的商,在它们的差的右边写上第二节数作为第一个余数;
4.把商乘以20,试除第一个余数,所得的最大整数作试商(如果这个最大整数大于或等于10,就用9或8作试商);
5.用商乘以20加上试商再乘以试商。如果所得的积小于或等于余数,就把这个试商写在商后面,作为新商;如果所得的积大于余数,就把试商逐次减小再试,直到积小于或等于余数为止;
6.用同样的方法,继续求。
上述笔算开方方法是我们大多数人上学时课本附录给出的方法,实际中运算中太麻烦了。我们可以采取下面办法,实际计算中不怕某一步算错!!!而上面方法就不行。
比如136161这个数字,首先我们找到一个和136161的平方根比较接近的数,任选一个,比方说300到400间的任何一个数,这里选350,作为代表。
我们计算05(350+136161/350)得到3695
然后我们再计算05(3695+136161/3695)得到3690003,我们发现3695和3690003相差无几,并且,369^2末尾数字为1。我们有理由断定369^2=136161
一般来说能够开方开的尽的,用上述方法算一两次基本结果就出来了。再举个例子:计算469225的平方根。首先我们发现600^2<469225<700^2,我们可以挑选650作为第一次计算的数。即算
05(650+469225/650)得到6859。而685附近只有685^2末尾数字是5,因此685^2=469225
对于那些开方开不尽的数,用这种方法算两三次精度就很可观了,一般达到小数点后好几位。
实际中这种算法也是计算机用于开方的算法


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/13175314.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-06-16
下一篇 2023-06-16

发表评论

登录后才能评论

评论列表(0条)

保存