用一个IO驱动8个LED,不太保险,你加一个驱动缓冲器IC或者是三极管来增大驱动能力吧
16路的流水灯,你可以采用51单片机,直接接到16个IO口就完成了!74ls138译码器,只能是八选一,控制LED灯也只能八个中选一个点亮,如果需要点亮八个LED灯中间的 任意一个 或者 几个 或者 全亮,可以选择 74ls164移位寄存器 或者 74LS595锁存器就可以。
望采纳!74HC595是具有8位移位寄存器和一个存储器,三态输出功能。
但其只有8输出脚我认为可以把此8脚的高电平用来显示你说的 "原先有7个LED是亮" 然后要 "点亮另外一个LED" 可以通过此8脚的低电平来控制另外8个LED来实现啦嘿嘿
这两种方法
都是可以的
都可以驱动led指示灯。
1
关于你的led怎么都不亮:
原因可能是连接的方法不太对,你可以参考下述连接方式,检查一下你的电路。
方法1:
用8050的三极管做开关电路,三极管的基极接p20,然后用集电极通过led接5v电源,发射极通过220欧姆电阻接地。执行setb
p20
指令可以点亮led。
方法2:
是用p10直接驱动led,应该让led另一端通过220欧姆电阻接5v电源,执行clr
p10
指令
会点亮led。
呵呵
赶快再试试吧
满意后要选满意回答啊1、简单的做法是:每个LED的阳极接5V,阴极串限流电阻1k左右后接单片机P1口。(89C51单片机端口输出电流是靠上拉,很小60uA以下,输入电流是MOS管对地,每个管脚16mA左右。因此对于51必须靠灌电流直接驱动LED。即共阳接法。)
2、你想用74LS04驱动。那就把每个反相器再串在单片机和电阻之间。P1接输入,输出送到限流电阻。此时限流电阻可以更小些。如330欧姆,可达10mA左右。共阴共阳随便。LED点阵显示屏摘要 LED大屏幕显示系统,以AT89S52单片机为核心,由键盘显示、温度采集、串口通信、LED大屏幕显示等功能模块组成。本系统的灰阶控制功能由软件来实现,吸收了硬件软件化的思想,本系统不仅可以实现题目要求的基本功能,同时发挥部分也得到完全的实现,最主要的是LED显示屏的内容可以通过PC机进行实时修改,而且有一定的创新功能。关键字:单片机 LED大屏幕 滚屏显示 PC机控制1任务设计并制作一台简易LED电子显示屏,16行16列16灰阶点阵显示,原理示意图如下:PC机LED灰阶电子显示屏原理框图2要求
(1)基本要求:设计并制作LED电子显示屏和控制器。1) 自制一台简易16行16列16灰阶点阵显示的LED电子显示屏;
2) 自制显示屏控制器,扩展键盘和相应的接口实现多功能显示控制,显示屏显示16灰阶图像(可以是渐变灰阶条纹)、数字和字母亮度适中,应无闪烁。
3) 显示屏通过按键切换显示图像、数字和字母;
4) 显示屏能显示3组特定图像、数字或者英文字母组成的句子,通过按键切换显示内容;
5) 能显示2组特定汉字组成的句子,通过按键切换显示内容。(2)发挥部分:1) 自制一台简易16行32列灰阶点阵显示的LED电子显示屏;2) LED显示屏亮度连续可调。3) 实现信息的左右滚屏显示,预存信息的定时循环显示;4) 实现实时时间的显示,显示屏数字显示: 时∶分∶秒(例如 18∶38∶59);5) 增大到10组(每组汉字8个或16个数字和字符)预存信息,信息具有掉电保护;
6)实现和PC机通讯,通过PC机串口直接对显示信息进行更新(须做PC机客户程序);
7)其他发挥功能。3说明
(1)显示格式和显示信息可以自定义。
(2)电子显示屏LED显示灯只允许使用88 LED点阵显示模块。
(3) 显示屏的显示控制方案和控制器的选择方案任选。
(4) 不允许使用LED集成驱动模块和集成灰阶产生模块,可用CPLD或FPGA。2、方案论证21 显示部分:显示部分是本次设计最核心的部分,对于LED88点阵显示有以下两种方案:方案一:静态显示,将一帧图像中的每一个二极管的状态分别用0 和1 表示,若为0 ,则表示L ED 无电流,即暗状态;若为1 则表示二极管被点亮。若给每一个发光二极管一个驱动电路,一幅画面输入以后,所有L ED 的状态保持到下一幅画。对于静态显示方式方式,所需的译码驱动装置很多,引线多而复杂,成本高,且可靠性也较低。方案二:动态显示,对一幅画面进行分割,对组成画面的各部分分别显示,是动态显示方式。动态显示方式方式,可以避免静态显示的问题。但设计上如果处理不当,易造成亮度低,闪烁问题。因此合理的设计既应保证驱动电路易实现,又要保证图像稳定,无闪烁。动态显示采用多路复用技术的动态扫描显示方式, 复用的程度不是无限增加的, 因为利用动态扫描显示使我们看到一幅稳定画面的实质是利用了人眼的暂留效应和发光二极管发光时间的长短, 发光的亮度等因素 我们通过实验发现, 当扫描刷新频率(发光二极管的停闪频率) 为50Hz, 发光二极管导通时间≥1m s 时, 显示亮度较好, 无闪烁感。鉴于上述原因, 我们采用方案二22.数字时钟数字时钟是本设计的重要的部分。根据需要,可利用两种方案实现。方案一:本方案完全用软件实现数字时钟。原理为:在单片机内部存储器设三个字节分别存放时钟的时、分、秒信息。利用定时器与软件结合实现1秒定时中断,每产生一次中断,存储器内相应的秒值加1;若秒值达到60,则将其清零,并将相应的分字节值加1;若分值达到60,则清零分字节,并将时字节值加1;若时值达到24,则将时字节清零。该方案具有硬件电路简单的特点,但当单片机不上电,程序将不执行。且由于每次执行程序时,定时器都要重新赋初值,所以该时钟精度不高。方案二:本方案采用Dallas公司的专用时钟芯片DS。该芯片内部采用石英晶体振荡器,其芯片精度不大于10ms/年,且具有完备的时钟闹钟功能,因此,可直接对其以用于显示或设置,使得软件编程相对简单。为保证时钟在电网电压不足或突然掉电等突发情况下仍能正常工作,芯片内部包含锂电池。当电网电压不足或突然掉电时,系统自动转换到内部锂电池供电系统。而且即使系统不上电,程序不执行时,锂电池也能保证芯片的正常运行,以备随时提供正确的时间。基于时钟芯片的上述优点,本设计采用方案二完成数字时钟的功能。23 温度采集部分能进行温度测量是本设计的创新部分,由于现在用品追求多样化,多功能化,所以我们决定给系统加上温度测量显示模块,方便人们的生活,使该设计具有人性化。方案一:采用热敏电阻,可满足 40 摄氏度至 90 摄氏度测量范围,但热敏电阻精度、重复性、可靠性较差,对于检测小于 1 摄氏度的信号是不适用的。方案二:采用温度传感器DS18B20。DS18B20可以满足从-55摄氏度到+摄氏度测量范围,且DS18B20测量精度高,增值量为05摄氏度,在一秒内把温度转化成数字,测得的温度值的存储在两个八位的RAM中,单片机直接从中读出数据转换成十进制就是温度,使用方便。基于DS18b20的以上优点,我们决定选取DS18b20来测量温度。24 显示接口芯片的选择方案一:采取并口输入,占用大量I/O口资源方案二:选取串口输入,使用较少。所以我们选用串口输入。串口输入我们可以选用芯片有74HC、74LS、TPIC6B。但是74HC和74LS两种芯片必须加驱动才能驱动LED,而TI 公司的DMOS 器件TPIC6B , 除具有TTL 和CMOS 器件中移位寄存器 的逻辑功能外, 其最大的特点是驱动功率大, 可直接用作LED的驱动。综合以上比较,我们选取TPIC6B来驱动LED点阵。25 串口通讯芯片的选择AT89S52串行口采用的是TTL电平,因此必须的有电平转换电路,可以选择,,MAXA方案一:采用或芯片实现电平转换,但在使用中发现这两种芯片可靠性不高,且需要正负12V电源,使用麻烦。方案二:采用单电源电平转换芯片MAXA可以使电路变得简单,可靠。基于以上分析,我们选用方案二,选用芯片MAXA26 电源模块方案一:采用干电池作为LED点阵系统的电源,由于点阵系统耗电量较大,使用干电池需经常换电池,不符合节约型社会的要求。点阵系统要悬挂在墙上,电池总量大,使用会有较大安全隐患。方案二:采用W/5V直流稳压电源作为系统电源,不仅功率上可以满足系统需要,不需要更换电源,并且比较轻便,使用更加安全可靠基于以上分析,我们决定采用方案二3、总体方案31 工作原理:利用单片机AT89S52单片机作为本系统的中控模块。单片机可把由DS18B20、DS读来的数据利用软件来进行处理,从而把数据传输到显示模块,实现温度、日历的显示。点阵LED电子显示屏显示器为主要的显示模块,把单片机传来的数据显示出来,并且可以实现滚动显示。在显示电路中,主要靠按键来实现各种显示要求的选择与切换。32 总体设计设计总体框图如图14、系统硬件设计(单元电路设计及分析)41 AT89S52单片机最小系统最小系统包括晶体振荡电路、复位开关和电源部分。图2为AT89S52单片机的最小系统。42 温度测量模块图3 DS18B20测量电路温度测量传感器采用DALLAS公司DS18B20的单总线数字化温度传感器,测温范围为-55℃~℃,可编程为9位~12位A/D转换精度,测温分辨率达到0℃,采用寄生电源工作方式, CPU只需一根口线便能与DS18B20通信,占用CPU口线少,可节省大量引线和逻辑电路。接口电路如图3所示。43 时钟模块时钟模块采用DS芯片,DS 是DALLAS 公司推出的涓流充电时钟芯片内含有一个实时时钟/日历和31 字节静态RAM 通过简单的串行接口与单片机进行通信实时时钟/日历电路提供秒分时日日期月年的信息每月的天数和闰年的天数可自动调整时钟 *** 作可通过AM/PM 指示决定采用24 或12 小时格式DS 与单片机之间能简单地采用同步串行的方式进行通信仅需用到三个口线1 RES 复位2 I/O 数据线3 SCLK串行时钟时钟/RAM 的读/写数据以一个字节或多达31 个字节的字符组方式通信DS 工作时功耗很低保持数据和时钟信息时功率小于1mW,其接线电路如图4图4 时钟电路44 键盘模块键盘、状态显示模块:为了使软件编程简单,本设计利用可编程芯片。接法如表1所示。PA口接按键,PC口则用于控制状态显示所用LED点阵。每个按键都通过一个10K的上拉电阻接电源+Vcc,按键的另一端接地。当有键按下时,与该键相连的PA口的相应位变为低电平,单片机检测到该变化后即转到相应的键处理程序,同时在程序中点亮LED点阵。模块电路如图545 LED显示模块点阵数据串行输入, 器件为 移位寄存器TPIC6B, 门控和扫描信号常以16 点阵为一行进行并行处理。在点阵显示中以4×8个L ED 点阵构成一个L ED 显示单元, 采用行共阳列共阴的编排方式。其驱动分为行列两部分, 分别来自于行、列移位寄存器, 行数据是扫描数据, 16 行中每次只有一行被驱动, 采用逐行扫描方式, 列数据则为汉字的点阵码。。对于字符和图形显示也可以用点阵处理, 其显示原理和方法相同电路如图6图6 LED显示电路46灰阶控制461 阶灰度控制方法对于LED 发光灯, 灰度控制方法主要有驱动电流控制法和驱动脉冲占空比控制法。占空比控制法是在一定的显示重复扫描频率下, LED 器件的亮度可由发光时间Tu 与扫描周期T 的比Tu/T 进行控制。在相同的LED 正向电流作用下, Tu 越长发光能量越大, 只要周期性扫描的速度足够快的话, 人眼发觉不了1 个周期内不发光的部分, 只是感觉LED 的亮度更高。本设计采用占空比控制法。462 图像扫描方法在图像扫描显示过程中, 每次传输和显示的只是带有8 bit 灰度级的某一列数据的1 bit, 这样传输并显示8次, 就可以反映出8 bit 的灰度级。具体方法为:首先扫描显示16 行各列8 bit 灰度值的D0 比特, 其次扫描显示16行各列的D1比特, 依此类推, 直到显示16 行各列灰度值的D7 bit。各部分按顺序重复上述过程, 直到整屏扫描显示完, 对于16 行各列1 bit 的扫描细节过程为: 从第一行开始, 首先送这一行各列D0 位灰度值数据到各列移位寄存器锁存器, 然后, 送第2 行各列的D0 位数据, 同时显示第1 行数据。依次类推, 直到显示第16 行各列的D0位数据, 同时开始第1 行的D1 位数据。重复8 次扫描显示16 行。每比特扫描时间如下图2所示,整个扫描过程可以如图3所示。方案一、通过FPGA来实现灰阶控制, 是在FPGA 设计工具中利用译码器产生一系列OE 脉宽的具体电路图。E2…E10 来自计数器; H1, H2, H4, H8, H16, H32, H64, H,H 为译码器译出的不同脉宽的OE 信号源。H1为一个时钟周期, H2 为半个时钟周期, 以此类推,H 为1/ 个时钟周期[2]。这一系列脉冲需要进入数据选择器进行分时输出, 最终输出的只有OE一条线。表1 是OE 脉冲分配表。因为H1 最宽, H1 输出时LED 最亮, 所以在这里不是将H1连续输出, 而是分散开, 其目的是提高显示屏的扫描频率, 降低频闪, 使屏幕图像看上去更加稳定。方案二、通过单片机软件扫描来实现LED不同灰阶的现实,从而达到显示图像的效果。由于缺少FPGA的开发工具,所以采用方案二。47亮度连续可调控制方案一 通过在软件中调节刷新频率。刷新频率高的时候,连续点亮的时间短,显示屏亮度低,当刷新频率调低时,连续点亮的时间延长,显示屏变亮。因此通过调节占空比来实现显示屏亮度的调整。但是由于软件调节亮度变化不连续不能实现连续的亮度调节。并且会出现闪烁。调节的效果不明显,故不采用此方案。方案二 通过调节电位器来改变电压,实现亮度的调节。调节电位器实现线形电压调整,从而控制三极管使显示屏压降发生改变。从而达到连续调节亮度的目的。电位器的调节范围较大,因此用此方法来调节。48电源选择W/5V的直流稳压电源更加安全,电路图如图7图7 电源电路49 PC机通讯491硬件连接设计MAX是标准的串口通信接口,对于一般的双向通讯,只需要使用串行输入口RXD(第3脚)、串行输出TXD(第2脚)和地线(第7脚)。MAX逻辑电平的规定如表2图8 串口通讯492软件设计通过VC++在PC机上编写一个上位机软件实现对单片机的控制,实现LED显示内容和现实方式的控制。410整体电路系统整体电路如下:图9 整体电路5、系统软件设计51主程序52显示子程序流程53 显示时间子程序流程54 与PC串口通讯程序55温度测量流程图
实在不行换一个 或者在硬之城上面找找这个型号的资料锁存器 比如
1,先把锁存关掉 然后把1这个状态 送到 锁存器的输入端,1这个状马上被送到输出端,输入输出是直通的,这个时候输入改变输出也同时改变状态。
2,再将锁存器打开,那么改变输入但输出是不变的,这样就释放了 单片机的IO口。
如果你的控制系统用的是 (位选)74LS244 (段选) 74LS595的话 可以不用锁存器(自己的系统)如果是学习板一般都会加锁存器,因为学习板单片机IO不是只针对一个控制系统的。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)