茎叶图中将所有的数列出,找出中间的数,奇数个为一个,偶数时中间两个数的平均数,即为中位数。平均数则是将所以的数相加再除以个数。众数是指茎叶图具有明显集中趋势点的数值是一组数据中出现次数最多的数值。
茎叶图又称“枝叶图”,是在20世纪早期由英国统计学家阿瑟·鲍利设计,1977年统计学家约翰托奇在其著作《探索性数据分析》中将这种绘图方法介绍给大家,从此这种作图方法变得流行起来。
茎叶图的思路是将数组中的数按位数进行比较,将数的大小基本不变或变化不大的位作为一个主干(茎),将变化大地位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干后面的几个数,每个数具体是多少。
扩展资料
茎叶图有三列数,左边的一列数统计数,它是上(或下)向中心累积的值,中心的数(带括号)表示最多数组的个数;中间的一列表示茎,也就是变化不大的位数。
右边的是数组中的变化位,它是按照一定的间隔将数组中的每个变化的数一一列出来,像一条枝上抽出的叶子一样,所以人们形象地叫它茎叶图。
参考资料来源:百度百科-茎叶图
参考资料来源:百度百科-众数
一、在Excel有可以直接生成直方图的功能。但WPS表格里面找不到类似选项。分步 *** 作吧:
1、分别按源数据生成:最大值、最小值、极差、分组数、分组组距。
2、按分组组距生成各分组,再按频率函数FREQUENCY()生成对应频率。
3、选频率生成柱形图。
二、茎叶图其实不是图表,而是一个数据矩阵:
1、分别输入0、1、2、……、8、9、……作为茎叶图的主干。
2、按源数据的十位数(十位数+百位数、个位数等)为主干,把相同主干的数据分列于主干的一侧。
由茎叶图看出甲的极差是37-8=29,甲的中位数是22+24 |
2 |
乙的众数是21,所以选项A、B、C错.从图中看出甲的数据集中在茎2上且呈单峰出现,所以甲的平均水平比乙高.
故选D.这20名同学中成绩不低于130分的同学有6个,分别为133 130 132 133 133 134
按成绩低到高的顺序130,132,133,133,133,134
从该小组中任意取出3名同学一共有3C6=20种可能的取法
极差总可能:0,1,2,3,4
极差为0 只有一种可能 133 133 133 p=1/20
极差为1只有六种可能 132和任意两个133 134和任意两个133 p=6/20
极差为2只有三种可能 132和任意一个133和134 p=3/20
极差为3只有六种可能 130和132和任意一个133 130和任意两个133 p=6/20
极差为4只有四种可能 130和134和任意一个132或133 p=4/20一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1下列哪种工作不能使用抽样方法进行()
A测定一批炮d的射程
B测定海洋水域的某种微生物的含量
C高考结束后,国家高考命题中心计算数学试卷中每个题目的难度
D检测某学校全体高三学生的身高和体重的情况
[答案] D
[解析] 抽样是为了用总体中的部分个体(即样本)来估计总体的情况,选项A、B、C都是从总体中抽取部分个体进行检验,选项D是检测全体学生的身体状况,所以,要对全体学生的身体都进行检验,而不能采取抽样的方法
2从一堆苹果中任取10只,称得它们的质量如下(单位:克):
125 120 122 105 130 114 116 95 120 134
则样本数据落在[1145,1245)内的频率为()
A02 B03
C04 D05
[答案] C
[解析] 该题考查频率的计算公式属基础题
在[1145,1245]范围内的频数m=4,样本容量n=10,所求频率=04
3某学校高二年级共有526人,为了调查学生每天用于休息的时间,决定抽取10%的学生进行调查;一次数学月考中,某班有12人在100分以上,30人在90~100分,12人低于90分,现从中抽取9人了解有关情况;运动会工作人员为参加4×100 m接力的6支队安排跑道就这三个事件,恰当的抽样方法分别为()
A分层抽样、分层抽样、简单随机抽样
B系统抽样、系统抽样、简单随机抽样
C分层抽样、简单随机抽样、简单随机抽样
D系统抽样、分层抽样、简单随机抽样
[答案] D
[解析] 中人数较多,可采用系统抽样;适合用分层抽样;适合于简单随机抽样
4某工厂生产A,B,C三种不同型号的产品,产品数量之比依次为23∶5,现用分层抽样方法,抽出一个容量为n的样本,样本中A型号的产品有16件,则此样本的容量n等于()
A100 B200
C90 D80
[答案] D
[解析] =,得n=80
5一组观察值4,3,5,6出现的次数分别为3,2,4,2,则样本平均值约为()
A455 B45
C125 D164
[答案] A
[解析] 样本平均值为=≈455
6对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是()
1 2 5 2 0 2 3 3 3 1 2 4 4 8 9 4 5 5 5 7 7 8 8 9 5 0 0 1 1 4 7 9 6 1 7 8 A46,45,56 B46,45,53
C47,45,56 D45,47,53
[答案] A
[解析] 本题考查了茎叶图的应用及其样本的中位数、众数、极差等数字特征,由茎叶图可知,中位数为46,众数为45,极差为68-12=56在求一组数据的中位数时,一定不要忘记先将这些数据排序再判断
7某市场在国庆黄金周的促销活动中,对10月2日9时至14时的销售额进行统计,其频率分布直方图如图所示已知9时至10时的销售额为25万元,则11时至12时的销售额为()
A6万元 B8万元
C10万元 D12万元
[答案] C
[解析] 设11时至12时的销售额为x万元,因为9时至10时的销售额为25万元,依题意得=,得x=10万元
8为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:
父亲身高x(cm) 174 176 176 176 178 儿子身高y(cm) 175 175 176 177 177 则y对x的线性回归方程为()
Ay=x-1 By=x+1
Cy=88+x Dy=176
[答案] C
[解析] 本题主要考查线性回归方程以及运算求解能力利用公式求系数
==176,
==176,
b==,a=-b=88,
所以y=88+x
9(2014·山东理,7)为了研究某药品的疗效,选取若干名志愿者进行临床试验所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,……,第五组下图是根据试验数据制成的频率分布直方图已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()
A6 B8
C12 D18
[答案] C
[解析] 本题考查频率分布直方图的识读
第一、二两组的频率为024+016=04
志愿者的总人数为=50(人)
第三组的人数为:50×036=18(人)
有疗效的人数为18-6=12(人)
频率分布直方图中频率与频数的关系是解题关键
10在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是()
A甲地:总体均值为3,中位数为4
B乙地:总体均值为1,总体方差大于0
C丙地:中位数为2,众数为3
D丁地:总体均值为2,总体方差为3
[答案] D
[解析] 解法一:A中,若连续10天甲地新增疑似病例数据分别为x1=x2=x3=x4=0,x5=x6=x7=x8=x9=4,x10=10,此时总体均值为3,中位数为4,但第10天新增疑似病例超过7,故A错;B中,若x1=x2=x3=x4=x5=x6=x7=x8=x9=0,x10=10,此时,总体均值为1,方差大于0,但第10天新增疑似病例超过7,故B错;C中,若x1=x2=x3=x4=0,x5=1,x6=3,x7=3,x8=3,x9=8,x10=9,此时,中位数为2,众数为3,但第9天、第10天新增疑似病例超过7,故C错,故选D
解法二:由于甲地总体均值为3,中位数为4,即中间天数(第5、6天)人数的平均数为4,因此后面的人数可以大于7,故甲地不符合;乙地中总体均值为1,因此这10天的感染人数总和为10,又由于方差大于0,故这10天中不可能每天都是1,可以有一天大于7,故乙地不符合丙地中位数为2,众数为3,3出现的最多,并且可以出现8,故丙地不符合
第卷(非选择题 共100分)
二、填空题(本大题共5个小题,每小题5分,共25分,将正确答案填在题中横线上)
11某班级有52名学生,要从中抽取10名学生调查学习情况,若采用系统抽样方法,则此班内每个学生被抽到的机会是________
[答案]
[解析] 采用系统抽样,要先剔除2名学生,确定间隔k=5,但是每名学生被剔除的机会一样,故虽然剔除了2名学生,这52名学生中每名学生被抽到的机会仍相等,且均为=
12一个社会调查机构就某地居民的月收入调查10 000人,并根据所得数据画了样本的频率分布直方图(如图所示)为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人作进一步调查,则在[2 500,3 000)(元)月收入段应抽出________人
[答案] 25
[解析] 样本数据在[2 500,3 000]内的频率为00005×500=025
故应抽出100×025=25(人)
13青年歌手大奖赛共有10名选手参赛,并请了7名评委,如图所示的茎叶图是7名评委给参加最后决赛的两位选手甲、乙评定的成绩,去掉一个分和一个最低分后,甲、乙选手剩余数据的平均成绩分别为________
甲 乙 8 5 7 9 8 6 5 4 8 4 4 4 6 7 2 9 3 [答案] 842,85
[解析] 甲的成绩是75,78,84,85,86,88,92,去掉一个分92和一个最低分75后,则甲的平均成绩为842;乙的成绩是79,84,84,84,86,87,93,去掉一个分93和一个最低分79后,则乙的平均成绩为85
14某地区有农民、工人、知识分子家庭共计2 004家,其中农民家庭1 600户,工人家庭303户现要从中抽出容量为40的样本进行年人均收入的调查,则在整个抽样过程中,可以用到下列抽样方法中的________(将你认为正确的选项的序号都填上)
简单随机抽样 系统抽样 分层抽样
[答案]
[解析] 显然要用分层抽样由于抽样比不是整数,先剔除4人,要用简单随机抽样——借助随机数表,各类家庭中抽样可用系统抽样
15某地为了了解该地区10 000户家庭的用电情况,采用分层抽样的方法抽取了500户家庭的月平均用电量,并根据这500户家庭的月平均用电量画出频率分布直方图(如图所示),则该地区10 000户家庭中月平均用电度数在[70,80]的家庭有________户
[答案] 1 200
[解析] 由频率分布直方图可得,月平均用电度数在[70,80]的家庭占总体的12%,所以共有10 000×12%=1 200户
三、解答题(本大题共6个小题,共75分,解答应写出文字说明、证明过程或演算步骤)
16(本小题满分12分)某公司为了了解一年内用水情况,抽查了10天的用水量如下表:
天数 1 1 1 2 2 1 2 吨数 22 38 40 41 44 50 95 根据表中提供的信息解答下面问题:
(1)这10天中,该公司每天用水的平均数是多少
(2)这10天中,该公司每天用水的中位数是多少
(3)你认为应该使用平均数和中位数中哪一个数来描述该公司每天的用水量
[解析] (1)=
=51(t)
(2)中位数==425(t)
(3)用中位数425t来描述该公司的每天用水量较合适因为平均数受极端数据22,95的影响较大
17(本小题满分12分)某学校青年志愿者协会共有250名成员,其中高一学生88名,高二学生112名,高三学生50人,为了了解志愿者活动与学校学习之间的关系,需要抽取50名学生进行调查试确定抽样方法,并写出过程
[解析] 分三种情况抽样:
(1)简单随机抽样,每位同学被抽取的概率为
(2)系统抽样,将250名同学编号001~250,编号间隔5个,将其分成50个小组,每个小组抽取1人,相邻组抽取的编号也间隔5
(3)分层抽样,高一抽取18个,高二抽取22个,高三抽取10个
18(本小题满分12分)国家队教练为了选拔一名篮球队员入队,分别对甲、乙两名球员的10场同级别比赛进行了跟踪,将他们的每场得分记录如下表:
场次 1 2 3 4 5 6 7 8 9 10 甲 40 23 29 35 35 54 42 48 56 10 乙 20 15 19 44 9 34 42 18 45 51 (1)求甲、乙球员得分的中位数和极差
(2)甲球员得分在区间[30,50)的频率是多少
(3)如果你是教练,你将选拔哪位球员入队请说明理由
[解析] (1)由题表画出茎叶图,如下图所示
甲 乙 0 9 0 1 5 8 9 9 3 2 0 5 5 3 4 8 2 0 4 2 4 5 6 4 5 1 甲球员得分的中位数为=375,
极差为56-10=46;
乙球员得分的中位数为=27,
极差为51-9=42
(2)甲球员得分在区间[30,50)的频率为=
(3)如果我是教练,我将选拔甲球员入队,原因如下:甲球员得分集中在茎叶图的下方,且叶的分布是“单峰”,说明甲球员得分平均数接近40,甲球员得分的中位数为375分,且状态稳定;而乙球员得分较分散,其得分的中位数为27分,低于甲球员,平均得分也小于甲球员
19(本小题满分12分)为了了解一个小水库中养殖的鱼的有关情况,从这个水库中多个不同位置捕捞出100条鱼,称得每条鱼的质量(单位:千克),并将所得数据分组,画出频率分布直方图(如图所示)
分组 频率 [100,105) [105,110) [110,115) [115,120) [120,125) [125,130)
(1)在频率分布表中填写相应的频率;
(2)估计数据落在[115,130)中的概率为多少;
(3)将上面捕捞的100条鱼分别作一记号后再放回水库,几天后再从水库的多处不同位置捕捞出120条鱼,其中带有记号的鱼有6条,请根据这一情况来估计该水库中鱼的总条数
[解析] (1)根据频率分布直方图可知,频率=组距×故可得下表:
分组 频率 [100,105) 005 [105,110) 020 [110,115) 028 [115,120) 030 [120,125) 015 [125,130) 002 (2)030+015+002=047,所以数据落在[115,130)中的概率约为047
(3)=2000
所以水库中鱼的总条数约为2000条
20(本小题满分13分)两台机床同时生产直径为10的零件,为了检验产品质量,质量检验员从两台机床的产品中各抽出4件进行测量,结果如下:
机床甲 10 98 10 102 机床乙 101 10 99 10 如果你是质量检验员,在收集到上述数据后,你将通过怎样的运算来判断哪台机床生产的零件质量更符合要求
[解析] 甲=(10+98+10+102)=10,
乙=(101+10+99+10)=10,
由于甲=乙,因此,平均直径反映不出两台机床生产的零件的质量优劣
s=[(10-10)2+(98-10)2+(10-10)2+(102-10)2]=002,
s=[(101-10)2+(10-10)2+(99-10)2+(10-10)2]=0005
这说明乙机床生产出的零件直径波动小,因此,从产品质量稳定性的角度考虑,乙机床生产的零件质量更符合要求
21(本小题满分14分)某个体服装店经营某种服装在某周内获纯利y(元)与该周每天销售这种服装件数x之间有如下一组数据:
x 3 4 5 6 7 8 9 y 66 69 73 81 89 90 91 (1)求,;
(2)画出散点图,并用最小二乘法求出y关于x的线性回归方程;
(3)估计每天销售10件这种服装时可获纯利润多少元
[解析] (1)由已知得=(3+4+5+6+7+8+9)=6
=(66+69+73+81+89+90+91)≈7986
(2)散点图如图所示,
=280,iyi=3 487
设回归直线方程为y=bx+a,则
b==≈475,
a=-b=7986-475×6=5136
所求回归直线方程为y=475x+5136
(3)当x=10时,y=9886,估计每天销售这种服装10件可获纯利9886元
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)