1、向量(或矢量)的长度,也叫向量的模;
2、模运算,模运算其实就是求余运算,运算符为%,如7模3即为7%3=1;另外,在高等数学中,模运算还有其他用法,如果不是大学中数学专业的学生一般是不会涉及的,所以关于这个就不说了。
modulus翻译成模数,模量很常见,例如复数的模数,齿轮的模数,材料的Young模量,模数就是标记模式的数。
模(modulus)源自拉丁语“unit of measure”,指测量的单位,测量依赖的标准,测量依赖的模版。
复数的模数,齿轮的模数,材料的Young模量中的模就是这个意思。数论里的 a≡b mod m就是说 a,b对照着根据 m 而定的模版来看是相等的。代数里的模是“可以做模运算的结构”的推广。数论里的模形式是椭圆曲线模空间上的函数。
(一)求复数模的范围或最值,通常有以下几种方法:(1)利用复数的三角形式,转化为求三角函数式的最值问题;
(2)考虑复数的几何意义,转化为复平面上的几何问题;
(3)化为实数范围内的最值问题,或利用基本不等式;
(4)转化为函数的最值问题。
(5)很少用不等式。
(二)求复数的辐角及辐角的范围(包括主值)通常用以下几种方法:
(1)将一个复数表示成三角形式后再确定;
(2)利用复数乘除法运算的几何意义;
(3)利用复数与复平面上的点或向量的对应关系及数形结合,转化为几何问题。
你可以把复数看成一个向量,横纵坐标分别为实部虚部,用类比就很容易明白了!当z1、z2同向时即实部虚部比相等且为正右半式等号成立,比例相等为负时左半式等号成立
设复数z=a+bi(a,b∈R),则复数z的模|z|= ,它的几何意义是复平面上一点(a,b)到原点的距离。
运算法则:
| z1·z2| = |z1|·|z2|
┃| z1|-| z2|┃≤| z1+z2|≤| z1|+| z2|
| z1-z2| = | z1z2|,是复平面的两点间距离公式,由此几何意义可以推出复平面上的直线、圆、双曲线、椭圆的方程以及抛物线。
扩展资料
运算法则
1、加法法则
复数的加法法则:设z1=a+bi,z2=c+di是任意两个复数。两者和的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。两个复数的和依然是复数。
即
2、乘法法则
复数的乘法法则:把两个复数相乘,类似两个多项式相乘,结果中i2= -1,把实部与虚部分别合并。两个复数的积仍然是一个复数。
即
3、除法法则
复数除法定义:满足 的复数 叫复数a+bi除以复数c+di的商。
运算方法:将分子和分母同时乘以分母的共轭复数,再用乘法法则运算,
即
4、开方法则
若zn=r(cosθ+isinθ),则 (k=0,1,2,3…n-1)
参考资料:
参考资料:
数学中的复数的模。将复数的实部与虚部的平方和的正的平方根的值称为该复数的模。
首先建立一个复平面,要记住这个平面和直角平面是不一样的,对这个复平面进行标注,横轴为a纵轴为j,原点仍然为o点。任意举例一个复数,比如说3+4j。
然后在复平面上以一个点表示出来。将点与o点连接起来,组合成向量,或者坐标。利用直尺直接可以测量出的长度,即为复数的模长。
如果要达到更加精确的结果,可以连接两个点过后,利用勾股定理直接求得出斜边等于两条直角边的平方之和,再开方,得到的结果就是复数的模。运算法则如下:
|z1·z2|=|z1|·|z2|。
┃|z1|-|z2|┃≤|z1+z2|≤|z1|+|z2|。
|z1-z2|,是复平面的两点间距离公式,由此几何意义可以推出复平面上的直线、圆、双曲线、椭圆的方程以及抛物线。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)