利用逐步逼近法可以得到平方根的近似值,求6的算术平方根的近似值

利用逐步逼近法可以得到平方根的近似值,求6的算术平方根的近似值,第1张

2^2<6<3^2
21^2<6<25^2
24^2<6<25^2
244^2<6<245^2
2449^2<6<245^2
24494^2<6<24495^2
6的算术平方根的近似值为24494

√101=√(100+1)=10√(1+001)
构造函数f(x)=√(1+x),
利用高数中的泰勒公式,
在x0=0处展开成级数,
f(x)=√(1+x)=1+x/2-x²/8+x³/16+O(x⁴)
取二阶近似,精度就已经很高了√101≈10(1+001/2-001²/8)≈100499

平方根计算方法一:能简化的根式先尽量简化。再将根数相乘,得出结果。最后把任何可以简化为完全平方数的数分离出来。方法二:能简化的根式先尽量简化。开始简化根数。再把根数进行相乘。然后因式分解出完全平方数。最后将系数相乘得出结果。

平方根

平方根,又叫二次方根,表示为〔±√ ̄〕,其中属于非负数的平方根称之为算术平方根。一个正数有两个实平方根,它们互为相反数,负数没有平方根,0的平方根是0。

算术平方根

一般地说,若一个非负数x的平方等于a,即x²=a,则这个数x叫做a的算术平方根。

算术平方根与平方根的联系

1、前提条件相同:算术平方根和平方根存在的前提条件都是“只有非负数才有算术平方根和平方根”。

2、存在包容关系:平方根包含了算术平方根,因为一个正数的算术平方根只是其两个平方根中的一个。

3、0的算术平方根和平方根相同,都是0。

简单方法是 背下一百以内的质数的开放
然后将要开的数 分解因式 例如 根号13=根号十三
根号123=根号431=2倍根号31
根号1500= 根号10015=10倍根号15=10倍根号5乘根号3
繁琐方法:
转帖
先一起来研究一下,怎样求 ,这里1156是四位数,所以它的算术平方根的整数部分是两位数,且易观察出其中的十位数是3.于是问题的关键在于;怎样求出它的个位数a?为此,我们从a所满足的关系式来进行分析. 根据两数和的平方公式,可以得到 1156=(30+a)2=302+2×30a+a2, 所以 1156-302=2×30a+a2, 即 256=(3×20+a)a, 这就是说, a是这样一个正整数,它与 3×20的和,再乘以它本身,等于256. 为便于求得a,可用下面的竖式来进行计算: 根号上面的数3是平方根的十位数.将 256试除以20×3,得4.由于4与20×3的和64,与4的积等于256,4就是所求的个位数a.竖式中的余数是0,表示开方正好开尽.于是得到 1156=342,或 上述求平方根的方法,称为笔算开平方法,用这个方法可以求出任何正数的算术平方根,它的计算步骤如下: 1.将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开(竖式中的11’56),分成几段,表示所求平方根是几位数; 2.根据左边第一段里的数,求得平方根的最高位上的数(竖式中的3); 3.从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数(竖式中的256); 4.把求得的最高位数乘以20去试除第一个余数,所得的最大整数作为试商(3×20除256,所得的最大整数是 4,即试商是4); 5.用商的最高位数的20倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试(竖式中(20×3+4)×4=256,说明试商4就是平方根的第二位数); 6.用同样的方法,继续求平方根的其他各位上的数. 按照上面步骤求 ,可得到下面左边的竖式: 于是得到 如遇开不尽的情况,可根据所要求的精确度求出它的近似值.例如求 的近似值(精确到001),可列出上面右边的竖式,并根据这个竖式得到 笔算开平方运算较繁,在实际中直接应用较少,但用这个方法可求出一个数的平方根的具有任意精确度的近似值. 我国古代数学的成就灿烂辉煌,早在公元前一世纪问世的我国经典数学著作《九章算术》里,就在世界数学史上第一次介绍了上述笔算开平方法.据史料记载,国外直到公元五世纪才有对于开平方法的介绍.这表明,古代对于开方的研究我国在世界上是遥遥领先的.

答案如下:

√2= 1414

√3= 1732

√4= 2000

√5= 2236

√6= 2449

√7= 2646

√8= 2828

√9= 3000

√10= 3162

“四舍五入”方法:

比保留的位数多看一位,该位上的数字是“5”或者比“5”大,向前进一,该位上的数字是“4”或者比“4”小,就舍去。

例如:656,保留一位小数,就是66。而654,保留一位小数,就是65。

在取小数 近似数的时候,如果尾数的最高位数字是4或者比4小,就把尾数去掉。如果尾数的最高位数是5或者比5大,就把尾数舍去并且在它的前一位进"1",这种取近似数的方法叫做四舍五入法。

《 九章算术》里也采用“四舍五入”的方法,在用比例法求各县应出的车辆时,因为车辆是整数,他们就采用四舍五入的方法对演算结果加以处理。

计算步骤如下:

1、将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开,分成几段,表示所求平方根是几位数;

2、根据左边第一段里的数,求得平方根的最高位上的数;

3、从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数;

4、把求得的最高位数乘以具体的数再去试除第一个余数,所得的最大整数作为试商;

5、用商的最高位数的倍数加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试;

6、用同样的方法,继续求平方根的其他各位上的数。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/13216583.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-06-21
下一篇 2023-06-21

发表评论

登录后才能评论

评论列表(0条)

保存