如何求反函数

如何求反函数,第1张

1、首先看这个函数是不是单调函数,如果不是则反函数不存在如果是单调函数,则只要把x和y互换,然后解出y即可。

2、例如:

y=x^2,x=正负根号y,则f(x)的反函数是正负根号x,求完后注意定义域和值域,反函数的定义域就是原函数的值域,反函数的值域就是原函数的定义域。

扩展资料:


1、反函数的性质:

(1)函数存在反函数的充要条件是,函数的定义域与值域是一一映射;

(2)一个函数与它的反函数在相应区间上单调性一致;

(3)大部分偶函数不存在反函数(当函数y=f(x), 定义域是{0} 且 f(x)=C (其中C是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0} )。奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。

(4)一段连续的函数的单调性在对应区间内具有一致性;

(5)严增(减)的函数一定有严格增(减)的反函数;

(6)反函数是相互的且具有唯一性;

(7)定义域、值域相反对应法则互逆(三反);

(8)反函数的导数关系:如果x=f(y)在开区间I上严格单调,可导,且f'(y)≠0,那么它的反函数y=f-1(x)在区间S={x|x=f(y),y∈I }内也可导,且:

(9)y=x的反函数是它本身。

2、反函数存在定理:

严格单调函数必定有严格单调的反函数,并且二者单调性相同。

参考资料来源:百度百科 - 反函数

反函数就是从函数y=f(x)中解出x,用y表示 :x=φ(y),如果对于y的每一个值,x都有唯一的值和它对应,那么x=φ(y)就是y=f(x)的反函数,习惯上,用x表示自变量,所以x=φ(y)通常写成y=φ(y) (即对换x,y的位置)。

求一个函数的反函数:

1、从原函数式子中解出 x 用 y 表示;

2、对换 x,y ;

3、标明反函数的定义域

注:反函数里的x是原函数里的y,原函数中,y≥0,所以反函数里的x≥0。在原函数和反函数中,由于交换了x、y的位置,所以原函数的定义域是反函数的值域,原函数的值域是反函数的定义域。

扩展资料:

反函数存在定理:

定理:严格单调函数必定有严格单调的反函数,并且二者单调性相同。

在证明这个定理之前先介绍函数的严格单调性。

设y=f(x)的定义域为D,值域为f(D)。如果对D中任意两点x1和x2,当x1<x2时,有y1<y2,则称y=f(x)在D上严格单调递增;当x1<x2时,有y1>y2,则称y=f(x)在D上严格单调递减。

证明:设f在D上严格单增,对任一y∈f(D),有x∈D使f(x)=y。

而由于f的严格单增性,对D中任一x'<x,都有y'<y;任一x''>x,都有y''>y。总之能使f(x)=y的x只有一个,根据反函数的定义,f存在反函数f-1。

任取f(D)中的两点y1和y2,设y1<y2。而因为f存在反函数f-1,所以有x1=f-1(y1),x2=f-1(y2),且x1、x2∈D。

若此时x1≥x2,根据f的严格单增性,有y1≥y2,这和我们假设的y1<y2矛盾。

因此x1<x2,即当y1<y2时,有f-1(y1)<f-1(y2)。这就证明了反函数f-1也是严格单增的。

如果f在D上严格单减,证明类似。

直接求原函数的值域困难时,可以通过求其反函数的定义域来确定原函数的值域,求反函数的步骤是这样的:
1、先求出反函数的定义域,因为原函数的值域就是反函数的定义域; 
(我们知道函数的三要素是定义域、值域、对应法则,所以先求反函数的定义域是求反函数的第一步) 
2、反解x,也就是用y来表示x;
3、改写,交换位置,也就是把x改成y,把y改成x; 
4、写出原函数及其值域。 
实例:y=2x+1(值域:任意实数)
x=(y-1)/2
y=(x-1)/2(x取任意实数)
特别地,形如kx+ky=b的直线方程和任意一个反比例函数,它的反函数都是它本身。
反函数求解三步骤:
1、换:X、Y换位
2、解:解出Y
3、标:标出定义域

可以使用arccos计算公式:cos(arcsinx)=√(1-x^2)计算。

一般来说,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作x=f-1(y) 。反函数x=f -1(y)的定义域、值域分别是函数y=f(x)的值域、定义域。最具有代表性的反函数就是对数函数与指数函数。

一般地,如果x与y关于某种对应关系f(x)相对应,y=f(x),则y=f(x)的反函数为x=f-1(y)。存在反函数(默认为单值函数)的条件是原函数必须是一一对应的(不一定是整个数域内的)。注意:上标"−1"指的是函数幂,但不是指数幂。


扩展资料:

反函数存在定理

定理:严格单调函数必定有严格单调的反函数,并且二者单调性相同。在证明这个定理之前先介绍函数的严格单调性。

设y=f(x)的定义域为D,值域为f(D)。如果对D中任意两点x1和x2,当x1<x2时,有y1<y2,则称y=f(x)在D上严格单调递增;当x1<x2时,有y1>y2,则称y=f(x)在D上严格单调递减。

证明:设f在D上严格单增,对任一y∈f(D),有x∈D使f(x)=y。

而由于f的严格单增性,对D中任一x'<x,都有y'<y;任一x''>x,都有y''>y。总之能使f(x)=y的x只有一个,根据反函数的定义,f存在反函数f-1。

任取f(D)中的两点y1和y2,设y1<y2。因为f存在反函数f-1,所以有x1=f-1(y1),x2=f-1(y2),且x1、x2∈D。

若此时x1≥x2,根据f的严格单增性,有y1≥y2,这和我们假设的y1<y2矛盾。

因此x1<x2,即当y1<y2时,有f-1(y1)<f-1(y2)。这就证明了反函数f-1也是严格单增的。

解析:

// 三步走,别无捷径 //

(1) 确定原函数的值域和定义域

(2) 由"原函数的表达式”求“x关于y的表达式"

PS:此处可能会用到原函数的定义域

(3) 交换x和y,得到反函数的表达式,附上定义域

反函数定义
般地,设函数y=f(x)(x∈A)的值域是C,根据这个函数中x,y 的关系,用y把x表示出,得到x= g(y)若对于y在C中的任何一个值,通过x= g(y),x在A中都有唯一的值和它对应,那么,x= g(y)就表示y是自变量,x是因变量y的函数,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f^-1(x)反函数y=f^-1(x)的定义域、值域分别是函数y=f(x)的值域、定义域
反函数性质
1)互为反函数的两个函数的图象关于直线y=x对称; 函数及其反函数的图形关于直线y=x对称
(2)函数存在反函数的充要条件是,函数的定义域与值域是一一映射; (3)一个函数与它的反函数在相应区间上单调性一致; (4)大部分偶函数不存在反函数(唯一有反函数的偶函数是f(x)=a^x,x∈{0},但是y=k(常数)无法通过水平线测试,所以没有反函数)奇函数不一定存在反函数被与y轴垂直的直线截时能过2个及以上点即没有反函数若一个奇函数存在反函数,则它的反函数也是奇函数(5)一切隐函数具有反函数; (6)一段连续的函数的单调性在对应区间内具有一致性; (7)严格增(减)的函数一定有严格增(减)的反函数反函数存在定理(8)反函数是相互的 (9)定义域、值域相反对应法则互逆(三反) (10)原函数一旦确定,反函数即确定(三定)(在有反函数的情况下,即满足(2)) 例:y=2x-1的反函数是y=05x+05 y=2^x的反函数是y=log2 x 例题:求函数3x-2的反函数 y=3x-2的定义域为R,值域为R由y=3x-2解得 x=1/3(y+2) 将x,y互换,则所求y=3x-2的反函数是 y=1/3(x+2)(x属于R) (11)反函数的导数关系:如果X=F(Y)在区间I上单调,可导,且F‘(Y)不等于0,那么他的反函数Y=F’(X)在区间S={X|X=F(Y),Y属于I }内也可导,且[F‘(X)]'=1\[F’(Y)]'
反函数说明
⑴在函数x=f’(y)中,y是自变量,x是函数,但习惯上,我们一般用x表示自变量,用y 表示函数,为此我们常常对调函数x=f‘(y)中的字母x,y,把它改写成y=f’(x),今后凡无特别说明,函数y=f(x)的反函数都采用这种经过改写的形式⑵反函数也是函数,因为它符合函数的定义从反函数的定义可知,对于任意一个函数y=f(x)来说,不一定有反函数,若函数y=f(x)有反函数y=f‘(x),那么函数y=f’(x)的反函数就是y=f(x),这就是说,函数y=f(x)与y=f‘(x)互为反函数⑶互为反函数的两个函数在各自定义域内有相同的单调性单调函数才有反函数,如二次函数在R内不是反函数,但在其单调增(减)的定义域内,可以求反函数⑷ 从映射的定义可知,函数y=f(x)是定义域A到值域C的映射,而它的反函数y=f‘(x)是集合C到集合A的映射,因此,函数y=f(x)的定义域正好是它的反函数y=f’(x)的值域;函数y=f(x)的值域正好是它的反函数y=f’(x)的定义域(如下表):函数:y=f(x) 反函数:y=f’(x)  定义域:A C  值域:C A  ⑷上述定义用“逆”映射概念可叙述为:若确定函数y=f(x)的映射f是函数的定义域到值域“上”的“一一映射”,那么由f的“逆”映射f^-1所确定的函数y=f’(x)就叫做函数y=f(x)的反函数反函数y=f‘(x)的定义域、值域分别是函数y=f(x)的值域、定义域开始的两个例子:s=vt记为f(t)=vt,则它的反函数就可以写为f’(s)=s/v,同样y=2x+6记为f(x)=2x+6,则它的反函数为:f‘(x)=x/2-3有时是反函数需要进行分类讨论,如:f(x)=x+1/x,需将x进行分类讨论:在x大于0时的情况,x小于0的情况,多是要注意的一般分数函数的反函数的表示为y=ax+b/cx+d(a/c不等于b/d)--y=b-dx/cx+a
直接求原函数的值域困难时,可以通过求其反函数的定义域来确定原函数的值域,求反函数的步骤是这样的:1、先求出反函数的定义域,因为原函数的值域就是反函数的定义域;  (我们知道函数的三要素是定义域、值域、对应法则,所以先求反函数的定义域是求反函数的第一步)  2、反解x,也就是用y来表示x; 3、改写,交换位置,也就是把x改成y,把y改成x;  4、写出原函数及其值域实例:y=2x+1(值域:任意实数) x=(y-1)/2 y=(x-1)/2(x取任意实数) 特别地,形如kx+ky=b的直线方程和任意一个反比例函数,它的反函数都是它本身反函数求解三步骤:1、换:X、Y换位 解出Y 3、标:标出定义域

只有从定义域到值域上一一映射所确定的函数才有反函数,简单来说,就是一个自变量x对应唯一个应变量y,如y=x,反之,像y=x² (x∈R)则不然,x=±1,y都=1,应变量不唯一,不是一一对应的关系。所以只要证明函数是连续严格单调递增或连续严格单调递减函数,一定有反函数。

求反函数的过程:

1求原函数的值域y∈A
2将函数y=f(x)的形式转换成x=g(y)的形式
3对调x=g(y)中的x,y,并标出定义域x∈A→得到反函数y=g(x)(x∈A)


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/13228369.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-06-23
下一篇 2023-06-23

发表评论

登录后才能评论

评论列表(0条)

保存