cpu性能强弱主要看哪些参数?

cpu性能强弱主要看哪些参数?,第1张

CPU的性能强弱主要看以下参数:

1、CPU主频

主频,也就是CPU的时钟频率,简单地说也就是CPU的工作频率。一个时钟周期完成的指令数是固定的,所以主频越高,CPU的速度也就越快,性能越强。

2、CPU外频和CPU倍频

外频即CPU的外部时钟频率。因为主频=外频X倍频,所以外频和倍频同样影响CPU的性能。

3、CPU缓存

缓存就是指可以进行高速数据交换的存储器,它优先于内存与CPU交换数据。因此缓存越大,CPU的等待时间越短,处理速度越快。

5、CPU多媒体指令集

多媒体指令对流行的图像处理、浮点运算、3D运算、视频处理、音频处理等多媒体应用起到全面强化的作用,CPU处理处理这些任务速度加快。

6、CPU制造工艺

制作工艺越精细,单位体积内集成的电子元件越多,处理器性能得到极大提升。

7、CPU单元

浮点运算能力是关系到CPU的多媒体、3D图形处理的一个重要指标,所以对于现代CPU,浮点单元运算能力的强弱更能显示CPU的性能。

任务管理器中选择“性能”,如下图所示。

在“性能”的“内核”这一栏就能看到电脑的CPU是几核的。

看参数识别CPU性能 \x0d\\x0d\CPU是Central Processing Unit(中央处理器)的缩写,CPU一般由逻辑运算单元、控制单元和存储单元组成。在逻辑运算和控制单元中包括一些寄存器,这些寄存器用于CPU在处理数据过程中数据的暂时保存。大家需要重点了解的CPU主要指标/参数有: \x0d\\x0d\1主频 \x0d\\x0d\主频,也就是CPU的时钟频率,简单地说也就是CPU的工作频率,例如我们常说的P4(奔四)18GHz,这个18GHz(1800MHz)就是CPU的主频。一般说来,一个时钟周期完成的指令数是固定的,所以主频越高,CPU的速度也就越快。主频=外频X倍频。 \x0d\\x0d\此外,需要说明的是AMD的Athlon XP系列处理器其主频为PR(Performance Rating)值标称,例如Athlon XP 1700+和1800+。举例来说,实际运行频率为153GHz的Athlon XP标称为1800+,而且在系统开机的自检画面、Windows系统的系统属性以及WCPUID等检测软件中也都是这样显示的。 \x0d\\x0d\2外频 \x0d\\x0d\外频即CPU的外部时钟频率,主板及CPU标准外频主要有66MHz、100MHz、133MHz几种。此外主板可调的外频越多、越高越好,特别是对于超频者比较有用。 \x0d\\x0d\3倍频 \x0d\\x0d\倍频则是指CPU外频与主频相差的倍数。例如Athlon XP 2000+的CPU,其外频为133MHz,所以其倍频为125倍。 \x0d\\x0d\4接口 \x0d\\x0d\接口指CPU和主板连接的接口。主要有两类,一类是卡式接口,称为SLOT,卡式接口的CPU像我们经常用的各种扩展卡,例如显卡、声卡等一样是竖立插到主板上的,当然主板上必须有对应SLOT插槽,这种接口的CPU目前已被淘汰。另一类是主流的针脚式接口,称为Socket,Socket接口的CPU有数百个针脚,因为针脚数目不同而称为Socket370、Socket478、Socket462、Socket423等。 \x0d\\x0d\5缓存 \x0d\\x0d\缓存就是指可以进行高速数据交换的存储器,它先于内存与CPU交换数据,因此速度极快,所以又被称为高速缓存。与处理器相关的缓存一般分为两种——L1缓存,也称内部缓存;和L2缓存,也称外部缓存。例如Pentium4“Willamette”内核产品采用了423的针脚架构,具备400MHz的前端总线,拥有256KB全速二级缓存,8KB一级追踪缓存,SSE2指令集。 \x0d\\x0d\内部缓存(L1 Cache) \x0d\\x0d\也就是我们经常说的一级高速缓存。在CPU里面内置了高速缓存可以提高CPU的运行效率,内置的L1高速缓存的容量和结构对CPU的性能影响较大,L1缓存越大,CPU工作时与存取速度较慢的L2缓存和内存间交换数据的次数越少,相对电脑的运算速度可以提高。不过高速缓冲存储器均由静态RAM组成,结构较复杂,在CPU管芯面积不能太大的情况下,L1级高速缓存的容量不可能做得太大,L1缓存的容量单位一般为KB。 \x0d\\x0d\外部缓存(L2 Cache) \x0d\\x0d\CPU外部的高速缓存,外部缓存成本昂贵,所以Pentium 4 Willamette核心为外部缓存256K,但同样核心的赛扬4代只有128K。 \x0d\\x0d\6多媒体指令集 \x0d\\x0d\为了提高计算机在多媒体、3D图形方面的应用能力,许多处理器指令集应运而生,其中最著名的三种便是Intel的MMX、SSE/SSE2和AMD的3D NOW!指令集。理论上这些指令对目前流行的图像处理、浮点运算、3D运算、视频处理、音频处理等诸多多媒体应用起到全面强化的作用。 \x0d\\x0d\7制造工艺 \x0d\\x0d\早期的处理器都是使用05微米工艺制造出来的,随着CPU频率的增加,原有的工艺已无法满足产品的要求,这样便出现了035微米以及025微米工艺。制作工艺越精细意味着单位体积内集成的电子元件越多,而现在,采用018微米和013微米制造的处理器产品是市场上的主流,例如Northwood核心P4采用了013微米生产工艺。而在2003年,Intel和AMD的CPU的制造工艺会达到009毫米。 \x0d\\x0d\8电压(Vcore) \x0d\\x0d\CPU的工作电压指的也就是CPU正常工作所需的电压,与制作工艺及集成的晶体管数相关。正常工作的电压越低,功耗越低,发热减少。CPU的发展方向,也是在保证性能的基础上,不断降低正常工作所需要的电压。例如老核心Athlon XP的工作电压为175v,而新核心的Athlon XP其电压为165v。 \x0d\\x0d\9封装形式 \x0d\\x0d\所谓CPU封装是CPU生产过程中的最后一道工序,封装是采用特定的材料将CPU芯片或CPU模块固化在其中以防损坏的保护措施,一般必须在封装后CPU才能交付用户使用。CPU的封装方式取决于CPU安装形式和器件集成设计,从大的分类来看通常采用Socket插座进行安装的CPU使用PGA(栅格阵列)方式封装,而采用Slot x槽安装的CPU则全部采用SEC(单边接插盒)的形式封装。现在还有PLGA(Plastic Land Grid Array)、OLGA(Organic Land Grid Array)等封装技术。由于市场竞争日益激烈,目前CPU封装技术的发展方向以节约成本为主。 \x0d\\x0d\10整数单元和浮点单元 \x0d\\x0d\ALU—运算逻辑单元,这就是我们所说的“整数”单元。数学运算如加减乘除以及逻辑运算如“OR、AND、ASL、ROL”等指令都在逻辑运算单元中执行。在多数的软件程序中,这些运算占了程序代码的绝大多数。 \x0d\\x0d\而浮点运算单元FPU(Floating Point Unit)主要负责浮点运算和高精度整数运算。有些FPU还具有向量运算的功能,另外一些则有专门的向量处理单元。 \x0d\\x0d\整数处理能力是CPU运算速度最重要的体现,但浮点运算能力是关系到CPU的多媒体、3D图形处理的一个重要指标,所以对于现代CPU而言浮点单元运算能力的强弱更能显示CPU的性能。

1、最简单方便的办法,就是打开系统的“设备管理器”窗口如下。点开“处理器”项,该项目下会显示红框内的CPU核心个数。下图中显示为4核心U;

2、同样其他第三方硬件检测工具,也可以检测CPU的状态信息。如AIDA64 Extreme工具软件,信息更多,也更详细;

3、还有著名的CPU-Z工具软件,其窗口下部的“核心数”和“线程数”,即为被测CPU的相关参数。

4、若被测CPU为更多核,软件也会如实报告测试结果。但对最新上市的多核U,则会不能正确显示处理器的型号名称,因它的数据库中还没有最新CPU的信息数据;

5、实际上CPU的核心数、线程数,也可以从网上用处理器的型号搜索,即可找到相关技术资料网页,主要技术指标数据一目了然。

28GHz 2M二级缓存 45纳米肯定要比27GHz 3M二级、三级缓存 65纳米的好。

CPU主要参数为:

1、CPU制造工艺

CPU制造工艺主要有180nm、130nm、90nm、65nm、45nm、22nm,密度愈高的IC电路设计,意味着在同样大小面积的IC中,可以拥有密度更高、功能更复杂的电路设计。

2、CPU主频

通常,主频越高,CPU处理数据的速度就越快。CPU的运算速度还要看CPU的流水线、总线等各方面的性能指标。

3、CPU外频

CPU的外频决定着整块主板的运行速度。通俗地说,在台式机中,所说的超频,都是超CPU的外频(当然一般情况下,CPU的倍频都是被锁住的)。

4、CPU倍频系数

在相同的外频下,倍频越高CPU的频率也越高。但实际上,在相同外频的前提下,高倍频的CPU本身意义并不大。

5、CPU总线频率

前端总线(FSB)是将CPU连接到北桥芯片的总线。前端总线(FSB)频率(即总线频率)是直接影响CPU与内存直接数据交换速度。有一条公式可以计算,即数据带宽=(总线频率×数据位宽)/8,数据传输最大带宽取决于所有同时传输的数据的宽度和传输频率。

6、CPU缓存

缓存大小也是CPU的重要指标之一,而且缓存的结构和大小对CPU速度的影响非常大,CPU内缓存的运行频率极高,一般是和处理器同频运作,工作效率远远大于系统内存和硬盘。

实际工作时,CPU往往需要重复读取同样的数据块,而缓存容量的增大,可以大幅度提升CPU内部读取数据的命中率,而不用再到内存或者硬盘上寻找,以此提高系统性能。

(1)L1 Cache(一级缓存)是CPU第一层高速缓存,分为数据缓存和指令缓存。

内置的L1高速缓存的容量和结构对CPU的性能影响较大,不过高速缓冲存储器均由静态RAM组成,结构较复杂,在CPU管芯面积不能太大的情况下,L1级高速缓存的容量不可能做得太大。一般服务器CPU的L1缓存的容量通常在32-256KB。

(2)L2 Cache(二级缓存)是CPU的第二层高速缓存,分内部和外部两种芯片。

内部的芯片二级缓存运行速度与主频相同,而外部的二级缓存则只有主频的一半。L2高速缓存容量也会影响CPU的性能,原则是越大越好,以前家庭用CPU容量最大的是512KB,笔记本电脑中也可以达到2M,而服务器和工作站上用CPU的L2高速缓存更高,可以达到8M以上。

(3)L3 Cache(三级缓存),分为两种,早期的是外置,内存延迟,同时提升大数据量计算时处理器的性能。

降低内存延迟和提升大数据量计算能力对游戏都很有帮助。而在服务器领域增加L3缓存在性能方面仍然有显著的提升。比方具有较大L3缓存的配置利用物理内存会更有效,故它比较慢的磁盘I/O子系统可以处理更多的数据请求。具有较大L3缓存的处理器提供更有效的文件系统缓存行为及较短消息和处理器队列长度。

扩展资料:

CPU防假指南:

1、看编号

这个方法对Intel和AMD的处理器同样有效,每一颗正品盒装处理器都有一个唯一的编号,在产品的包装盒上的条形码和处理器表面都会标明这个编号,这个编号相当于手机的IMEI码,如果你购买了处理器后发现这两个编号是不一样的,那就可以肯定你买的这个产品是被不法商人掉包过的了。

2、看包装

不法商人利用包装偷龙转凤是比较常用的手法,主要是出现在Intel的CPU上,Intel盒装处理器与散包处理器的区别就在于三年质保,价格方面相差几十到上百元不等。

当然,AMD盒装也是假货充斥,尤其以闪龙2500+与E6 3000+为多。由于不法商人的工艺制作水平有限,虽然假包装已经成为一个小规模的产业,但在包装盒的印刷制作上还是不可能达到正品包装盒的标准,因此,我们可以从包装盒的印刷等方面入手,识别真假。

以AMD的包装盒为例,没有拆封过的包装盒贴有一张标贴,如果没有这张标贴,那肯定是假货。而这张标贴也是鉴别包装盒真伪的一个切入点。从图中可以看到,正品的标贴通过机器刻上了“十”字形的割痕,在撕开后这张标贴就会损坏而作废。

而假的包装盒上面也有这张标贴,也同样有这个“十”字形的割痕,不过请注意,正品的“十”字形割痕中间并没有连在一起,而且割痕的长短深度都非常均匀,而假货的标贴往往是制假者自己用刀片割上去的,如果消费者发现这个“十”字形的割痕长短不一,而且中间连在一起,那就可以肯定这是被人动过手脚的了。

另外,由于这个方法的鉴别非常简单,一些不法商人就通过在包装盒上贴上新的编号鱼目混珠。鉴别真假的编号也要从印刷上来分辨。正规产品的编号条形码采用的是点阵喷码,字迹清晰,而且能够清楚的看到数字是由一个个“点”组成。

而假冒的条形码是用普遍印刷的,字迹较模糊且有粘连感,另外所采用的字体也不尽相同。如果发现这个条形码的印刷太差,字迹模糊,最好就不要购买了。

3、看风扇

这个方法主要还是针对Intel处理器,打开CPU的包装后,可以查看原装的风扇正中的防伪标签,真的Intel盒包CPU防伪标签为立体式防伪,除了底层图案会有变化外,还会出现立体的“Intel”标志。而假的盒包CPU,其防伪标识只有底层图案的变化,没有“Intel”的标志,而且散热片很稀疏比。

参考资料来源:百度百科-中央处理器

架构(FX,速龙X4,APU,这些推土机,打桩机,挖掘机架构CPU,单核就弱)主频。比如至强E5-2450L8核,主频只有18Ghz,单核睿频只有23Ghz这单核肯定是弱鸡(还有赛扬J1900这些4核,主频低不行的)测试软件,用的人比较多的CineBenchR15多核,核心数量,线程数量,主频。核心越多,线程越多,并且主频又高一定强(架构越新越好)

多核心多线程的优势需要程序本身的设计支持,简单来说就是核就在那,你调不调用它们一起工作,就是你的事了。
单核性能则就是实打实的直接影响性能的参数,要查其实也容易,Passmark上既有多核性能分,也有单核性能分,天梯图都是用它做的。
多核优化很重要,所以这也是为什么一些有潜力的超频U,比如7700K,超频以后比有些6核8核更快的原因


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/13258353.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-06-27
下一篇 2023-06-27

发表评论

登录后才能评论

评论列表(0条)

保存