使用笔记本的话,可能知道 Linux 系统的电源管理做得很不好。虽然有 TLP、 Laptop Mode Tools 和 powertop 这些工具来辅助减少电量消耗,但跟 Windows 和 Mac OS 系统比较起来,电池的整个使用周期还是不尽如意。
此外,还有一种降低功耗的办法就是限制CPU的频率。这是可行的,然而却需要编写很复杂的终端命令来设置,所以使用起来不太方便。幸好,有一款名为CPUPowerManager的GNOME扩展插件,可以很容易的就设置和管理你的CPU主频。
GNOME桌面系统中,CPUPowerManager使用名为intel_pstate的频率调整驱动程序(几乎所有的IntelCPU都支持)来控制和管理CPU主频。
扩展资料:
CPUPowerManager
查看CPU主频:显然,你可以通过这个提示窗口看到CPU的当前运行频率。
设置最大、最小主频:使用此扩展,你可以根据列出的最大、最小频率百分比进度条来分别设置其频率限制。一旦设置,CPU将会严格按照此设置范围运行。
开/关TurboBoost:这是我最喜欢的功能特性。大多数IntelCPU都有“TurboBoost”特性为了提高额外性能,其中的一个内核为自动进行超频。
此功能虽然可以使系统获得更高的性能,但也大大增加功耗。所以,如果不做CPU密集运行的话,为节约电能,最好关闭TurboBoost功能。事实上,在我电脑上,我大部分时间是把TurboBoost关闭的。
生成配置文件:可以生成最大和最小频率的配置文件,就可以很轻松打开/关闭,而不是每次手工调整设置。
ex文件管理器显示账户密码不对可以内存清理。根据查询相关公开信息显示,ex文件浏览器账户密码错误是解压的文件和手机不匹配造成的,或者外置内存已满,导致出现异常,可以适当的进行清理一下,再重新尝试。本文参考《Mac OS X and iOS Internals: To the Apple’s Core》 by Jonathan Levin文章内容主要是阅读这本书的读书笔记,建议读者掌握《 *** 作系统》,了解现代 *** 作系统的技术特点,再阅读本文可以事半功倍。
虽然iOS系统内核使用极简的微内核架构,但内容依然十分庞大,所以会分
系统架构 、 进程调度 、 内存管理 和 文件系统 四个部分进行阐述。
*** 作系统管理所有的硬件资源, *** 作系统内核管理最核心的资源CPU和内存。上一篇阐述了Mach通过进程管理CPU,本文主要阐述XNU和Mach如何高效的管理内存
按照传统,栈一般都是保存自动变量,正常情况栈由系统管理,但是在iOS中某些情况下,程序员也可以选择用栈来动态分配内存,方法是使用鲜为人知的alloca( ) 这个函数的原型和malloc( )是一样的,区别在于这个函数返回的指针是栈上的地址而不是堆中的地址。
从实现角度,alloca( )从两方面优于malloc( )
堆是由C语言运行时维护的用户态数据结构,通过堆的使用,程序可以不用直接在页面的层次处理内存分配。Darwin的libC 采用了一个基于分配区域(allocation zone)的特殊分配算法
在iOS中内存的管理是由在Mach层中进行的,BSD只是对Mach接口进行了POSIX封装,方便用户态进程调用。
XNU内存管理的核心机制是虚拟内存管理,在Mach 层中进行的,Mach 控制了分页器,并且向用户态导出了各种 vm_ 和 mach_vm_ 消息接口。 为方便用户态进程使用BSD对Mach 调用进行了封装,通过current_map( ) 获得当前的Mach 内存映射,最后再调用底层的Mach 函数。
BSD 的malloc 系列函数<bsd/sys/malloch> 头文件中。函数名为_MALLOC、_FREE、_REALLOC、_MALLOC_ZONE、_FREE_ZONE
mcache机制是BSD 提供的基于缓存的非常高效的内存分配方法。默认实现基于mach zone,通过mach zone提供预分配好的缓存内存。
mcache具有可扩展架构,可以使用任何后端 slab 分配器。
使用mcache 机制的主要优点是速度:内存分配和维护是在每一个 CPU 自有的cache中进行的,因此可以映射到CPU的物理cache,从而极大地提升访问速度。
Mach VM层支持VM pressure 的机制,这个机制是可用RAM量低到危险程度的处置,下面我们会详细讲,这里不展开。
当RAM量低到危险时,Mach的pageout 守护程序会查询一个进程列表,查询驻留页面数,然后向驻留页面数最高的进程发送NOTE_VM_PRESSURE ,会在进程队列中发出一个事件。被选中的进程会响应这个压力通知,iOS中的运行时会调用 didReceiveMemoryWarning 方法。
然而有些时候这些 *** 作没有效果,当内存压力机制失败之后, 非常时间要用非常手段 , Jetsam机制介入。
当进程不能通过释放内存缓解内存压力时,Jestam机制开始介入。这是iOS 实现的一个低内存清理的处理机制。也称为Memorystatus,这个机制有点类似于Linux的“Out-of-Memory”杀手,最初的目的就是杀掉消耗太多内存的进程。Memorystatus维护了两个列表:
在iOS的用户态可以通过 sysctl(2)查询这些列表,优先级列表可以在用户态进行设置。
在iOS 5中,Jestsam/Memorystatus 和默认的freezer 结合在一起,实现了对进程的冷冻而不是杀死。通过这种方式可以提供更好的用户体验,因为数据不会丢失,而且当内存情况好转时进程可以安全恢复。(感谢@易步指出本段错误)
用户态也可以通过pid_suspend( ) 和 pid_resume( )控制进程的休眠。
iOS 定义了 pid_hibernate,通过发送kern_hibernation_wakeup信号唤醒kernel_hibernation_thread 线程,这个线程专用于对进程冷冻 *** 作。
实际的进程休眠 *** 作是由jestsam_hibernate_top_proc 完成的,这个函数通过task_freeze冷冻底层的任务。
冷冻 *** 作需要遍历任务的vm_map,然后将vm_map 传递给默认的 freezer。
VM是Darwin系统内存管理的核心机制。
VM 机制主要通过内存对象(memory object)和分页器(pager)的形式管理内存。
Mach 虚拟内存的实现非常全面而且通用。这部分由两个层次构成:一层是和硬件相关的部分,另一层构建在这一层之上和硬件无关的公共层。OS X 和 iOS 使用的几乎一样的底层机制,硬件无关层以及之上的BSD 层中的机制都是一样的。
Mach 的 VM子系统可以说是和其要管理的内存一样复杂和充满了各种细节。然后从高层次看,可以看到两个层次:
虚拟内存这一层完全以一种机器无关的方式来管理虚拟内存。这一层通过几种关键的抽象表示虚拟内存:
Mach 允许使用多个分页器。事实上,默认就存在3~4个分页器。Mach 的分页器以外部实体的形式存在:是专业的任务,有点类似于其他系统上的内核交换(kernel-swapping)线程。Mach 的设计允许分页器和内核任务隔离开,设置允许用户态任务作为分页器。类似地,底层的后备存储也可以驻留在磁盘交换文件中(通过OS X 中的 default_pager 处理),可以映射到一个文件(由vnode_pager处理),可以是一个设备(由device_pager 处理)。注意:在Mach 中,每一个分页器处理的都是属于这个分页器的页面的请求,但是这些请求必须通过pageout 守护程序发出。这些守护程序(实际上就是内核线程)维护内核的页面表,并且判定哪些页面需要被清除出去。因此,这些守护程序维护的分页策略和分页器实现的分页 *** 作是分开的。
物理内存的页面处理的是虚拟内存到物理内存的映射,因为虚拟内存中的内容最终总要存储在某个地方。这一层面只有一个抽象,那就是pmap,不过这个抽象非常重要,因为提供了机器无关的接口。这个接口隐藏了底层平台的细节,底层的细节需要在处理器层次进行分页 *** 作,其中要处理的对象包括硬件页表项(page table entry,PTE)、翻译查找表(translation lookaside buffer,TLB)等。
每一个Mach 任务都要自己的虚拟内存空间,任务的struct task 中的 map 字段保存的就是这个虚拟内存空间。
vm_page_entry 中最关键的元素是vm_map_object,这是一个联合体,既可以包含另一个vm_map(作为子映射),也可以包含一个vm_object_t(由于这是一个联合体,所以具体的内容需要用布尔字段is_sub_map 来判断)。vm_object 是一个巨大的数据结构,其中包含了处理底层虚拟内存所需要的所有数据。vm_object的数据结构中的大部分字段都是用位表示的标志。这些字段表示了底层的内存状态(联动、物理连续和持久化等状态)和一些计数器(引用计数、驻留计数和联动计数等)。不过有3个字段需要特别注意:
memq:vm_page 对象的链表,每一项都表示一个驻留内存的虚拟内存页面。尽管一个对象可以表示一个单独的页面,但是多数情况下一个对象可以包含多个页面,所以每一个页面关联到一个对象时都会有一个偏移值
page:memory_object 对象,这是指向分页器的Mach 端口。分页器将未驻留内存的页面关联到后备存储,后备存储可以是内存映射的文件、设备和交换文件,后备存储保存了没有驻留内存的页面。换句话说,分页器(可以有多个)负责将数据从后备存储移入内存以及将数据从内存移出到后备存储。分页器对于虚拟内存子系统来说极为重要
internal:vm_page 中众多标志位之一,如果这个位为真,那么表示这个对象是由内核内部使用的。这个标志位的值决定了对象中的页面会进入哪一个pageout队列
尽管内核和用户空间一样,基本上只在虚拟地址空间内 *** 作,但是虚拟内存最终还是要翻译为物理地址的。机器的RAM 实际上是虚拟内存中开的窗口,允许程序访问虚拟内存是有限的,而且通常是不连续的区域,这些区域的上线就是机器上安装的内存。而虚拟内存中其他部分则要么延迟分配,要么共享,要么被交换到外部存储中,外部存储通常是磁盘。
然而虚拟内存和具体的底层架构相关。尽管虚拟内存和物理内存的概念在所有架构上本周都是一样的,但是具体的实现细节则各有千秋。XNU 构建与Mach 的物理内存抽象层之上,这个的抽象层成为pmap。pmap 从设计上对物理内存提供了一个统一的接口,屏蔽了架构相关的区别。这对于XNU来说非常有用,因为XNU支持的物理内存的架构包括以前的PowerPC,现在主要是Intel,然后在iOS 中还支持ARM。
Mach 的pmap 层逻辑上由一下两个子层构成:
Mach Zone的概念相当于Linux的内存缓存(memory cache)和Windows 的Pool。Zone 是一种内存区域,用于快速分配和是否频繁使用的固定大小的对象。Zone的API是内核内部使用的,在用户态不能访问。Mach中Zone的使用非常广泛。
所有的zone 内存实际上都是在调用zinit( )时预先分配好的(zinit( )通过底层内存分配器kernel_memory_allocate( )分配内存)zalloc( )实际上是对REMOVE_FROM_ZONE 宏的封装,作用是返回zone的空闲列表中的下一个元素(如果zone已满,则调用kernel_memory_allocate( )分配这个zone在定义的alloc_size字节)。zfree( ) 使用的是相反功能的宏 ADD_TO_ZONE。这两个函数都会执行合理数量的参数检查,不过这些检查帮助不大:过去zone分配相关的bug已经导致了数据可以被黑客利用的内存损坏。zalloc( ) 最重要的客户是内核中的kalloc( ),这个函数从kalloc系列zone中分配内存。BSD的mcache机制也会从自己的zone中分配内存。BSD内核zone也是如此,BSD内核zone直接构建与Mach的zone之上。
进程的内存需求早晚会超过可用的RAM,系统必须有一种方法能够将不活动的页面备份起来,并且从RAM中删除,腾出更多的RAM给活动的页面使用,至少暂时能够满足活动页面的需求。在其他 *** 作系统中,这个工作专门是由专门的内核线程完成的。在Mach 中,这些专门的任务称为分页器(pager),分页器可以是内核线程,设置建议是外部的用户态服务程序。
Mach分页器是一个内存管理器,负责将虚拟内存备份到某个特定类型的后备存储中。当内存容量不足,内存页面需要被交换出内存是,后备存储保存内存页面的内容:当换出的内存页面需要被使用时,将内存的页面恢复到RAM中。只有“脏”页面才需要进行上述的换出和换入,因为“脏”页面是在内存中修改过的页面,要从RAM中剔除时必须保存到磁盘中防止数据丢失。
要注意的是,这里提到的分页器仅仅实现了各自负责的内存对象的分页 *** 作,这些分页器不会控制系统的分页策略。分页策略是有vm_pageout 守护线程负责的。
iOS 和 OS X 中XNU 包含的分页器种类都是一样的。下表是XNU中的内存分页器的多种类型:
pageout 守护程序其实不是一个真的守护程序,而是一个线程。而且不是一般的线程:当kernel_bootstarp_thread( ) 完成内核初始化工作并且没有其他事情可做时,就调用vm_pageout( ) 成为了pageour 守护程序, vm_pageout( ) 永远不返回。这个线程管理页面交换的策略,判断哪些页面需要写回到其后备存储。
vm_pageout( ) 函数讲kernel_bootstrap_thread 线程转变为pageout 守护程序,这个函数实际上重新设置了这个线程。设置完成后,调用vm_pageout_continute( ),这个函数周期性地唤醒并执行vm_page_scan( ),维护4个页面表(称为页面队列)。系统中的每一个vm_page 都通过pageq字段绑定这4个队列中的一个:
垃圾回收线程(vm_pageout_garbage_collect( ))偶尔会被vm_pageout_scan( ) 通过其续体唤醒。垃圾回收机制线程处理4个方面的垃圾回收工作:
vm_pageout( ) 守护程序处理的只是交换的一个方向,从物理内存换出到后备存储。而另外一个方向是页面换入,则是发生在页面错误的时候处理的。这个逻辑非常复杂,简化为一下步骤:
页错误有很多种,上述只是其中一种,其他类型的也错误还包括:
VM系统是Mach中最重要最复杂而且最不好理解的子系统。Mach的内存管理核心是分页器,分页器允许将虚拟内存扩展到各种后背存储介质上:交换文件、内存映射文件、设备、甚至远程主机。
iOS中提高内存使用率的Freezer,以及处理内存耗尽的pageout守护程序。
>分类: 电脑/网络 >> 硬件
解析:
设备管理器是在 Windows CE *** 作系统下运行的进程,它跟踪已加载的驱动程序和它们的接口。它连续不断地运行并且从内核中启动。设备管理器可以在设备接口变得可用和不可用时通知用户。用户或系统本身可以使设备接口变得可用或不可用。另外,设备管理器通知内核设备接口支持文件 *** 作(例如,CreateFile)访问公开流接口的设备。设备管理器向设备驱动程序发送电源通知回调并提供电源管理服务。有关详细信息,请参阅 Power Management。
设备管理器控制注册表中的 Active 项。只有设备管理器应当访问 Active 项以获取读取或写入访问权限。您可以通过设备驱动程序的初始化函数的参数间接访问 Active 项。
设备管理器搜索 HKEY_LOCAL_MACHINE\Drivers\RootKey 注册表项,以确定用于开始驱动程序加载过程的项。RootKey 的默认值是 Drivers,但是它通常等于 Drivers\BuiltIn。设备管理器调用 ActivateDeviceEx 以加载由 Dll 子项的值(它位于由 RootKey 值指定的项中)指定的驱动程序。Dll 子项的值默认情况下为 BusEnumdll(也称为总线枚举器)。加载 BusEnumdll 会使所有设备驱动程序加载。由 ActivateDeviceEx 加载的设备可以从它的 Active 注册表项中读取它的激活句柄。
当设备管理器加载时,它还加载 I/O 资源管理器,以便从注册表中读取可用资源的列表。有关 I/O 资源管理器的详细信息,请参阅 I/O Resource Manager。
设备管理器将总线名称与驱动程序相关联。未命名的设备也可以具有总线名称,因为即使应用程序可能无法访问驱动程序,驱动程序也可能被其他驱动程序或系统实体(例如,电源管理器)访问。总线名称可以具有与正规设备名称不同的 ACL。
设备管理器跟踪由驱动程序公布的接口,并且支持基于全局唯一标识符 (GUID) 搜索驱动程序。IClass 接口可以将接口 GUID 与驱动程序的旧式名称、$device 名称或 $bus 名称(例如,“COM1 :”、“$device\1”或“$bus\pci_0_3_0”)相关联。
驱动程序可以通过调用 DMAdvertiseInterface 以编程方式公布接口。DMAdvertiseInterface 使驱动程序能够将更多可搜索的 GUID 添加到它们的关联列表中。DMAdvertiseInterface 由 Devmgrdll 公开,后者还实现了大多数设备管理器功能。因为只有设备管理器可以加载 Devmgrdll,所以只有设备驱动程序可以调用 DMAdvertiseInterface。如果设备驱动程序在卸载时没有公布它的接口的不可用性,则设备管理器会自动清除接口公布通知。
设备管理器组件
设备管理器由 Deviceexe 和 Devmgrdll 组成。Deviceexe 包含 Devmgrdll,后者实现了核心设备管理器功能。因为设备管理器由两个单独的模块组成,所以设备驱动程序可以直接与设备管理器链接并调用特定的函数(例如,DMAdvertiseInterface),而不会引起系统调用的开销。
下表显示了设备管理器的组件。
组件 说明
devcore
提供核心设备管理器功能。
iorm
提供 I/O 资源管理器功能。Iorm 是必需的组件且无法移除。
nopmif
pmif
Pmif 提供了电源管理器 DLL 入口点的接口。
Nopmif 提供了电源管理器入口点的存根版本。
另请参阅
Device File Names | Device Manager Reference | Device Manager Registry Keys | I/O Resource Manager | Resolving Race Conditions in Device Drivers | Stream Interface Drivers
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)