汉诺塔第五层怎么玩?

汉诺塔第五层怎么玩?,第1张

汉诺塔5层31步口诀:

1将最左边的圆柱的第一个盘放到最右边的圆柱上。

2将最左边的圆柱的第二个盘放到中间的圆柱上。

3再将最右边的圆盘放到中间的圆柱上。

4将最左边的第一个盘放到最右边的圆柱上。

5找到三个圆盘的移动规律,把左面圆柱的第一个盘放到中间,就可以移动第五个盘。

6再将最右边圆柱的圆盘移到中间,最左边圆柱的盘放到最右边。

7之后顺序改变,将之前圆柱123换成213的顺序,将中间圆柱的第五个盘放到最左边。

8将第四个放到之前第五个圆盘的上方,游戏就结束了。

通关步骤:

1如下图所示:柱子从左到右设为:ABC ;环从小到大设为:12345;

2移动方法:

1→C,2→B,1→B,3→C,1→A,2→C,1→C,4→B;

1→B,2→A,1→A,3→B,1→C,2→B,1→B,5→C;

1→A,2→C,1→C,4→A,1→B,2→A,1→A,4→C;

1→C,2→B,1→B,3→C,1→A,2→C,1→C,完成!

汉诺塔:(又称河内塔)问题是源于印度一个古老传说的益智玩具。大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。

大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘。

有预言说,这件事完成时宇宙会在一瞬间闪电式毁灭。也有人相信婆罗门至今还在一刻不停地搬动着圆盘。

汉诺塔算法介绍:

一位美国学者发现的特别简单的方法:只要轮流用两次如下方法就可以了。

把三根柱子按顺序排成“品”字型,把所有圆盘按从大到小的顺序放于柱子A上,根据圆盘数量来确定柱子排放的顺序:

n若为偶数的话,顺时针方向依次摆放为:ABC;而n若为奇数的话,就按顺时针方向依次摆放为:ACB。这样经过反复多次的测试,最后就可以按照规定完成汉诺塔的移动。

因此很简单的,结果就是按照移动规则向一个方向移动金片:

如3阶汉诺塔的移动:A→C,A→B,C→B,A→C,B→A,B→C,A→C。

扩展资料:

汉诺塔经典题目:

三根相邻的柱子,标号为A,B,C,A柱子上从下到上按金字塔状叠放着n个不同大小的圆盘,要把所有盘子一个一个移动到柱子B上,且每次移动同一根柱子上都不可以出现大盘子在小盘子上方的情况。

至少需要几次移动的问题,我们设移动次数为H(n)。

把上面n-1个盘子移动到柱子C上,把最大的一块放在B上,把C上的所有盘子移动到B上,由此我们得出表达式:

H⑴ = 1

H(n) = 2H(n-1)+1 (n>1)

很快我们就可以得到H(n)的一般式为:

H(n) = 2^n - 1 (n>0)

且这种方法的确是最少次数的,证明非常简单,可以尝试从2个盘子的移动开始证,可以试试。

进一步加深问题:

假如现在每种大小的盘子都有两个,并且是相邻的,设盘子个数为2n,问:⑴假如不考虑相同大小盘子的上下要几次移动,设移动次数为J(n);⑵只要保证到最后B上的相同大小盘子顺序与A上时相同,需要几次移动,设移动次数为K(n)。

⑴中的移动相当于是把前一个问题中的每个盘子多移动一次,也就是:

J(n) = 2H(n) = 2(2^n - 1) = 2^(n+1)-2

在分析⑵之前,我们来说明一个现象,假如A柱子上有两个大小相同的盘子,上面一个是黑色的,下面一个是白色的,我们把两个盘子移动到B上,需要两次。

盘子顺序将变成黑的在下,白的在上,然后再把B上的盘子移动到C上,需要两次,盘子顺序将与A上时相同,由此我们归纳出当相邻两个盘子都移动偶数次时,盘子顺序将不变,否则上下颠倒。

回到最开始的问题,n个盘子移动,上方的n-1个盘子总移动次数为2H(n-1),所以上方n-1个盘子的移动次数必定为偶数次,最后一个盘子移动次数为1次。

讨论问题⑵:

综上可以得出,要把A上2n个盘子移动到B上,可以得出上方的2n-2个盘子必定移动偶数次,所以顺序不变,移动次数为:

J(n-1) = 2^n-2

然后再移动倒数第二个盘子,移动次数为2J(n-1)+1 = 2^(n+1)-3,

最后移动最底下一个盘子,所以总的移动次数为:

K(n) = 2(2J(n-1)+1)+1 = 2(2^(n+1)-3)+1 = 2^(n+2)-5

参考资料:

汉诺塔(益智玩具)-百度百科

汉诺塔算法介绍:
把三根柱子按顺序排成“品”字型,把所有圆盘按从大到小的顺序放于柱子A上,根据圆盘数量来确定柱子排放的顺序:n若为偶数的话,顺时针方向依次摆放为:ABC;而n若为奇数的话,就按顺时针方向依次摆放为:ACB。
这样经过反复多次的测试,最后就可以按照规定完成汉诺塔的移动。因此很简单的,结果就是按照移动规则向一个方向移动金片:如3阶汉诺塔的移动:A→C,A→B,C→B,A→C,B→A,B→C,A→C。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/13287932.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-07-08
下一篇 2023-07-08

发表评论

登录后才能评论

评论列表(0条)

保存