首先,打开控制面板,网络连接。
在本地连接上点右键,选择属性。
双击进入 Internet协议(TCP/IP),点击“使用下面的IP地址”
写入 IP 地址和子网掩码,记住要和NPORT 的IP 地址在同一子网段内。如NPORT 默认IP
为192.168.127.254,255.255.255.0;就需要把PC 机的IP 地址设为192.168.127.XXX,
255.255.255.0,最后一个数字不同即可。
点击确定。
第二章:网络和串口参数配置
搜索 NPort
打开NPort Administrator(可以在光盘的对应位置找到这个软件,安装好),点击Search,此
时请确认网络防火墙已经关闭。
会搜索到我们的NPort5110,点击stop,停止搜索。
网络参数配置
双击右边空白处的NPort 设备,会出现以下界面,点击选择Network 选项卡,点击Modify
修改。可以看到以下界面:
我们可以在里面修改NPort的以下参数:
IPAddress:IP地址。
Netmask:子网掩码。
Gateway:网关。
IP Configuration:可以配置为静态IP(Static),或者为DHCP(动态IP)。
DNS Server1和2:DNS,域名解析服务器。
串口参数配置
点击 Serial选项卡,点击Modify修改,双击端口进去,可以看到以下界面:
我们可以在里面修改以下参数:
Baud Rate:波特率,NPort5000 系列只能支持标准波特率,如9600,115200bps 等。
Parity:校验。
None:无校验
Even:偶校验。
Odd:奇校验。
Space:空。
Mark:标志。
Data Bits:数据位。
Stop Bits:停止位。
Flow Control:流量控制。
None:无流量控制。
XON/XOFF:软件流控。
RTS/CTS:硬件流控。
FIFO:64bit先进先出,为了降低CPU负载,提高设备性能。可以选择Enable启用,或Disable
禁用。
Interface:可选择RS232,RS422,RS485 2线,或者RS485 4线。(NP5110 只能为RS232)
设置好后,点击OK,设置保存,设备重新启动。
第三章: *** 作模式设置
Real COM映射端口
打开 NPort Administrator(可以在光盘的对应位置找到这个软件,安装好),点击Search,此
时请确认网络防火墙已经关闭。
会搜索到我们的NPort5110,点击stop,停止搜索。
双击右边的5110,选择Operating Mode选项卡,确认为Real COM模式:
点击左边的第四项:COM MAPPING,
再点击Add
点击“OK”,
点击“Apply”保存
点击“Yes”,点击“OK”。
这样,端口就映射好了。
TCP Server模式的设置(用软件)
打开 NPort Administrator(可以在光盘的对应位置找到这个软件,安装好),点击Search,此
时请确认网络防火墙已经关闭。
会搜索到我们的NPort5110,点击stop,停止搜索。如果打开防火墙,可以使用Search IP,
在下面选项框里输入NPort的IP地址,
点击 OK,就可以搜索到NPort设备。
双击右边的NP5110,切换到OperatingMode选项卡,点击Modify,双击进去。可以把模式
修改成TCP Server 模式。
里面的名词解释:
Local TCP Port:本地数据端口,指的是NP5110 的数据端口。
Command Port:NP5110 的命令端口。
Max Connection:最大连接数,也就是说同时最大可以有几台上位机采集到下面串口设备
的数据,NPort5000 系列最大是4 个,NPort6000 和CN2600 系列是8 个。
当最大连接数为2 或以上的时候,右边的选项Allow Driver Control 和Ignore Jammed IP会开
启。
Allow Driver Control:当最大连接数为2 或以上时,且此功能打开时,上位机A 需要以
4800bps打开串口,上位机B需要以9600bps打开串口,是可以的。如果此功能关闭,则波
特率需以固件中的设置一致。
Ignore Jammed IP:当最大连接数为2 或以上时,且此功能打开时,其中一台上位机A死
机,上位机B 依然可以正常接收数据。如果此功能关闭,则上位机B 也不能收到串口的数
据了。
配置串口需要包含头文件
其中最核心的配置结构体为:
如何获取该结构呢?我们 *** 作串口跟 *** 作文件一样,也是调用 open() 函数来打开串口,
这样我们就能够得到一个文件描述符 fd ,然后就可以调用 tcgetattr() 函数来获取上述配置结构体了。
Linux 串口默认的配置为:波特率 9600,数据位 8 位,无奇偶校验,停止位 1 位,无 CTS/RTS 。
以下介绍一些常用的配置项:波特率、奇偶校验、数据位、停止位、硬件控制流。
相关接口:
Linux 将串口的波特率分为了输入波特率和输出波特率,不过最常用的场景是将两者设置成一样。
cfgetispeed() 函数获取输入波特率, cfgetospeed() 函数获取输出波特率。 cfsetispeed() 函数设置输入波特率, cfsetospeed() 函数用于设置输出波特率,当然 cfsetspeed() 函数扩展为同时设置输入和输出波特率。
上述接口中的 speed_t 是一系列波特率的标志位,例如常用的 115200 波特率就为 B115200,参考下述选项:
设置奇偶校验位可以通过修改 termios 结构体中的 c_cflag 成员来实现,若无校验,则将 PARENB 位设为 0;若有校验,则 PARENB 为 1。之后再根据 PARODD 来区分奇偶校验, PARODD 为 1 表示奇校验, PARODD 为 0 表示偶校验。例如设置无奇偶校验位:
设置数据位可以通过修改 termios 结构体中的 c_cflag 成员来实现,CS5、CS6、CS7 和 CS8 分别代表数据位 5、6、7 和 8。不过在设置数据位之前,需要先用 CSIZE 来做屏蔽字段,清楚这几个标志位,例如设置数据位为 8 位:
设置停止位可以通过修改 termios 结构体中的 c_cflag 成员来实现, CSTOPB 位为 1 表示 2 位停止位, CSTOPB 位为 0 标志 1 位停止位。例如设置停止位为 1 位:
设置硬件控制流可以通过修改 termios 结构体中的 c_cflag 成员来实现, CRTSCTS 为 1 表示使用硬件控制流,为 0 表示不使用硬件控制流。例如使能硬件控制流:
当然,最后还需要用 tcflush() 抛弃存储在 fd 里的未接收的数据。
再利用接口 tcsetattr() 函数将配置信息写入文件描述符 fd :
这样整个串口最常用的用法就配置完成了。
具体的配置使用可以参考我的项目 HCI-Middleware 里的 hci_transport_uart_linux.c 文件。
参考:
就是把串口的波特率提上去,硬件环境呢,就是采用飞凌的TE2440-II(比较古老了,大家勿喷) *** 作系统是linux2.6.28,大家都知道,正常情况下,Linux下串口波特率最高到115200,因为我们特殊需要的原因,需要把波特率提高到至少460800,当然最理想的结果就是波特率达到921600,大的背景就是这个样子了。然后先考究硬件,看看在硬件上到底能不能满足我们的要求,主控芯片S3C2440,在UART一章说在系统时钟下,波特率最高可达115200,然后注释中说如果Pclk达到60M,可以实现921600,我就按他说的,将主频提高,顺便将pclk提高到了60M,发现921600根本实现不了,230400波特率虽然能通,但是错误率很高,根本无法用,然后我又尝试着将Pclk提高到了70M,通过这种饮鸩止渴的方式,波特率可以提高到230400并且稳定传输,但是更高的波特率则无法实现,而Pclk不能无限提高,因为我们开发板还连接了触摸屏,在Pclk70M的情况下,触摸屏经常重启,说明这个方案不可行,所以就pass掉了,下面简单说一下我怎么更改的系统时钟Fclk,Hclk,Pclk。这三个时钟的关系以及计算方法我就不赘述了,我主要参考博客http://blog.csdn.NET/dong_zhihong/article/details/8469269进行修改
1)首先找到bootloader中 INC文件夹下的Option.inc文件,打开以后,找到如下代码段,这段代码就是主频400M时对应的M,P和S值设置,需要更改主频的话更改其中相应的数值几个(后来我发现,其实这个地方不改也行,因为最终起作用的是第二步)
[ FCLK = 400000000
CLKDIV_VAL EQU5
1:4:8
M_MDIV EQU
127 127
M_PDIV EQU
2 2
[ CPU_SEL = 32440001
M_SDIV EQU
1 2440A
|
M_SDIV EQU
0 2440X
]
]
2)找到u2440mon.c,然后在main()函数中找到如下代码,修改case2中的mpll_val = (92<<12)|(1<<4)|(1)这一行(为啥修改这一行?因为在这个switch代码有个j=2),其中三个数分别代表M,P,S。这才是决定主频的关键。
switch(j) {
case 0:
//240
key = 14
mpll_val = (112<<12)|(4<<4)|(1)
break
case 1:
//320
key = 14
mpll_val = (72<<12)|(1<<4)|(1)
break
case 2:
//400
key = 14
mpll_val = (92<<12)|(1<<4)|(1)
break
case 3:
//420!!!
key = 14
mpll_val = (97<<12)|(1<<4)|(1)
break
default:
key = 14
mpll_val = (92<<12)|(1<<4)|(1)
break
}
3)然后再 2440lib.c文件中,找到 ChangeClockDivider()函数,这个函数是控制分频比的,代码如下,这两个一个控制h_div,一个控制p_div。其中case 18: hdivn=2break这一行控制H分频,具体怎么改可以参考手册。
switch(hdivn_val) {
case 11: hdivn=0break
case 12: hdivn=1break
case 13:
case 16: hdivn=3break
case 14:
case 18: hdivn=2break
}
switch(pdivn_val) {
case 11: pdivn=0break
case 12: pdivn=1break
}
只需以上三步,就可以更改系统主频以及分频比,得到自己想要的Fclk和Pclk。
然后再说说我把上一个方案否定了以后,再仔细阅读芯片手册,发现串口的时钟源可以有三种方式获得:pclk,fclk/n,exclk,而且手册上说采用外部时钟的话,可以做到更高的波特率,但是这需要更改硬件,从指定那个引脚引入一个时钟,然后还要更改驱动程序,所以放弃了,所以只剩下一个路可以走,就是采用fclk/n的方式作为串口的时钟源,因为fclk频率很高,所以时钟源提高了,就可以把波特率提上来。然后就开始看linux内核源代码,因为串口的驱动早就集成到了linux内核之中,然后我就跳进了一个大坑。
其实串口本身的驱动并不复杂,如果裸机开发的话我感觉不难(强调一下,这个串口的裸机开发我没有做过,请做过的人不要喷我),因为串口被封装到了linux系统中,并且是层层封装,最终被封装成了tty的形式,所以我就从tty的驱动看起,抽丝剥茧,从里面寻找蛛丝马迹,
首先发现了s3c2440.c这个文件,通过调试得知,初始化的时候调用了其中的s3c2440_serial_init()函数,刚开始以为在这个文件中就这个函数有用,其实后来才知道,这个文件中的s3c2440_serial_getsource()和s3c2440_serial_setsource()在驱动中多次被调用。
然后考虑到,在上位机设置波特率的时候,调用的是系统函数cfsetispeed(),后经调试得知,这个函数调用了Samsung.c这个文件中的s3c24xx_serial_set_termios()这个函数,所有与串口相关的配置都与这个函数有关,因此锁定了方向,只要从这个函数中找到与波特率以及时钟源相关的语句,更改成我想要的即可,而这个函数又调用了很多子函数,但真正与波特率及时钟源相关的函数就是如下几句
/*
* Ask the core to calculate the divisor for us.
*/
baud = uart_get_baud_rate(port, termios, old, 0, 115200*8)
if (baud == 38400 &&(port->flags &UPF_SPD_MASK) == UPF_SPD_CUST)
quot = port->custom_divisor
else
quot = s3c24xx_serial_getclk(port, &clksrc, &clk, baud)
/* check to see if we need to change clock source */
if (ourport->clksrc != clksrc || ourport->baudclk != clk) {
s3c24xx_serial_setsource(port, clksrc)
if (ourport->baudclk != NULL &&!IS_ERR(ourport->baudclk)) {
clk_disable(ourport->baudclk)
ourport->baudclk = NULL
}
clk_enable(clk)
ourport->clksrc = clksrc
ourport->baudclk = clk
}
其中,uart_get_baud_rate()函数用于计算出上位机程序到设置的波特率的值,经我调试得知,上位机波特率从2400到921600都可以被准确的计算出来;所以这个函数跳过,然后看最后那个if语句,这个语句的作用是产看目前的时钟源是否与设置的时钟源相同,如果不相同,则按照设置的时钟源进行更改,这里面还涉及linux下的关于管理时钟的一个结构体clk结构体,参照博客http://blog.chinaunix.Net/uid-26583794-id-3208153.html以及http://wenku.baidu.com/view/13b4c686b9d528ea80c77904.html我找到了linux下的mach-smdk2440.c这个文件,这个文件中定义了串口所用的clk结构体,这也是linux系统启动时对串口的初始化配置结构体都在这,但是我更改过这个地方,让他初始化配置是首选fclk作为串口的时钟源,但是我发现这并没有效果,所以继续寻找中。
这样就剩下一个函数可以考虑了,s3c24xx_serial_getclk(),进入这个函数你会发现,这个函数是对串口时钟及波特率一个全面的配置,进入这个函数中,就有个结构体tmp_clksrc,这个结构体很关键,他的内容如下:
static struct s3c24xx_uart_clksrc tmp_clksrc = {
.name = "pclk",
.min_baud
= 0,
.max_baud
= 0,
.divisor
= 1,
}
从这个名字中就可以看出,它把串口的时钟源内定成为了pclk,这也是罪魁祸首,但是当我把name更改为fclk时,整个系统就无法启动了,包括前面说的更改mach-smdk2440.c中初始化配置,也是无法启动,后来在配置串口是做了一个判断,当波特率低于200000时,才有系统源配置不变,当波特率高于200000时,不在采用tmp_clksrc这个结构体,而是采用我自己定义的一个结构体,当然就是把name改成fclk,发现虽然只是能够更改 里面部分参数的时钟源,而正在的时钟源还是pclk,说明我的更改根本么有生效,由于这个linux调用太庞杂了,我就抱着试试看的态度,也是没有办法的办法,在配置完串口时钟的代码之后,添加了如下几行代码,直接更改S3C2440的寄存器,我知道这样做是很不“道德”的,而且很容易引起系统混乱,但是我只是这么试试,没想到还真的有用。
在 samsung.c文件中添加
if (baud >= 200000)
{
printk("baud >= 200000 @-------------samsung.c\n")
__raw_writel(0x1fc5,S3C24XX_VA_UART0 + S3C2410_UCON)
__raw_writel(0x0fc5,S3C24XX_VA_UART1 + S3C2410_UCON)
__raw_writel(0x8fc5,S3C24XX_VA_UART2 + S3C2410_UCON)
__raw_writel(32,S3C24XX_VA_UART0 + S3C2410_UCON+0x24)//保证控制台的波特率还是115200用于显示
__raw_writel(3,S3C24XX_VA_UART1 + S3C2410_UCON+0x24)//921600
//__raw_writel(3,S3C24XX_VA_UART1 + S3C2410_UCON+0x24)
}
上面这段代码经我多次试验得到的,因为一开始用的系统主时钟fclk为400M,这样算出来UBRDIV1分频应该为3,但是这样的话错误率比较高,还是导致无法传输,至此我终于明白手册上为什么说pclk在60M 可以实现921600了,因为用60M时钟计算的话,分频UBRDIV1为3.069,最接近整数3,所以在这个错误率下可以实现921600的波特率传输,所以我将系统时钟fclk设置为420M,其中MDIV=97,PDIV=1,SDIV=1,而ucon0=0x1fc5,ucon1=0x0fc5,ucon2=0x8fc5,这样n=1+6=7,所以串口的时钟源为fclk/n=60M,可以得到精确的921600波特率,所以实现我刚开始的目标,其实要实现其他的波特率也可以,比如460800,计算后主时钟fclk(尽量算出的分频UBRDIV1最贴近整数),然后就可以实现了。
在这还有个小想法,提高串口波特率,还可以使用USB转串口,因为USB转串口可以实现921600,而linux中以及集成了USB转串口的驱动,只需要在调用串口的那个open函数中改为调用USB转串口的节点即可,当然,这个方案我没有试,因为我们就一个USB口,而且还被占用了,所以希望有需要的朋友可以试一下。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)