Linux-怎么理解软中断

Linux-怎么理解软中断,第1张

中断是系统用来响应硬件设备请求的一种机制,它会打断进程的正常调度和执行,然后调用内核中的中断处理程序来响应设备的请求。

你可能要问了,为什么要有中断呢?我可以举个生活中的例子,让感受一下中断的魅力。

比如你订了一份外卖,但是不确定外卖什么时候送到,也没有别的方法了解外卖的进度,但是,配送员送外卖是不等人的,到了你这儿没人取的话,就直接走人了,所以你只能苦苦等着,时不时去门口看看外卖送到没,而不能干其他事情。

不过呢,如果在订外卖的时候,你就跟配送员约定好,让他送到后给你打个电话,那你就不用苦苦等待了,就可以去忙别的事情,直到电话一响,接电话、取外卖就可以了。

这里的“打电话”,其实就是一个中断。没接到电话的时候,你可以做其他的事情;只有接到了电话(也就是发生中断),你才要进行另一个动作:取外卖。

这个例子你就可以发现, 中断其实是一种异步的事件处理机制,可以提高系统的并发处理能力。

由于中断处理程序会打断其他进程的运行,所以, 为了减少对正常进程运行调度的影响,中断处理程序就需要尽可能快地运行。 如果中断本身要做的事情不多,那么处理起来也不会有太大问题;但如果中断要处理的事情很多,中断服务程序就有可能要运行很长时间。

特别是,中断处理程序在响应中断时,还会临时关闭中断。这就会导致上一次中断处理完成之前,其他中断都不能响应,也就是说中断有可能会丢失。

那么还是以取外卖为例。假如你订了 2 份外卖,一份主食和一份饮料,并且是由 2 个不同的配送员来配送。这次你不用时时等待着,两份外卖都约定了电话取外卖的方式。但是,问题又来了。

当第一份外卖送到时,配送员给你打了个长长的电话,商量发票的处理方式。与此同时,第二个配送员也到了,也想给你打电话。

但是很明显,因为电话占线(也就是关闭了中断响应),第二个配送员的电话是打不通的。所以,第二个配送员很可能试几次后就走掉了(也就是丢失了一次中断)。

如果你弄清楚了“取外卖”的模式,那对系统的中断机制就很容易理解了。事实上,为了解决中断处理程序执行过长和中断丢失的问题,Linux 将中断处理过程分成了两个阶段,也就是 上半部和下半部:

比如说前面取外卖的例子,上半部就是你接听电话,告诉配送员你已经知道了,其他事儿见面再说,然后电话就可以挂断了;下半部才是取外卖的动作,以及见面后商量发票处理的动作。

这样,第一个配送员不会占用你太多时间,当第二个配送员过来时,照样能正常打通你的电话。

除了取外卖,我再举个最常见的网卡接收数据包的例子,让你更好地理解。

网卡接收到数据包后,会通过 硬件中断 的方式,通知内核有新的数据到了。这时,内核就应该调用中断处理程序来响应它。你可以自己先想一下,这种情况下的上半部和下半部分别负责什么工作呢?

对上半部来说,既然是快速处理,其实就是要把网卡的数据读到内存中,然后更新一下硬件寄存器的状态(表示数据已经读好了),最后再发送一个 软中断 信号,通知下半部做进一步的处理。

而下半部被软中断信号唤醒后,需要从内存中找到网络数据,再按照网络协议栈,对数据进行逐层解析和处理,直到把它送给应用程序。

所以,这两个阶段你也可以这样理解:

实际上,上半部会打断 CPU 正在执行的任务,然后立即执行中断处理程序。而下半部以内核线程的方式执行,并且每个 CPU 都对应一个软中断内核线程,名字为 “ksoftirqd/CPU 编号”,比如说, 0 号 CPU 对应的软中断内核线程的名字就是 ksoftirqd/0。

不过要注意的是,软中断不只包括了刚刚所讲的硬件设备中断处理程序的下半部,一些内核自定义的事件也属于软中断,比如内核调度和 RCU 锁(Read-Copy Update 的缩写,RCU 是 Linux 内核中最常用的锁之一)等。

不知道你还记不记得,前面提到过的 proc 文件系统。它是一种内核空间和用户空间进行通信的机制,可以用来查看内核的数据结构,或者用来动态修改内核的配置。其中:

运行下面的命令,查看 /proc/softirqs 文件的内容,你就可以看到各种类型软中断在不同 CPU 上的累积运行次数:

在查看 /proc/softirqs 文件内容时,你要特别注意以下这两点。

第一,要注意软中断的类型,也就是这个界面中第一列的内容。从第一列你可以看到,软中断包括了 10 个类别,分别对应不同的工作类型。比如 NET_RX 表示网络接收中断,而 NET_TX 表示网络发送中断。

第二,要注意同一种软中断在不同 CPU 上的分布情况,也就是同一行的内容。正常情况下,同一种中断在不同 CPU 上的累积次数应该差不多。比如这个界面中,NET_RX 在 CPU0 和 CPU1 上的中断次数基本是同一个数量级,相差不大。

不过你可能发现,TASKLET 在不同 CPU 上的分布并不均匀。TASKLET 是最常用的软中断实现机制,每个 TASKLET 只运行一次就会结束 ,并且只在调用它的函数所在的 CPU 上运行。

因此,使用 TASKLET 特别简便,当然也会存在一些问题,比如说由于只在一个 CPU 上运行导致的调度不均衡,再比如因为不能在多个 CPU 上并行运行带来了性能限制。

另外,刚刚提到过,软中断实际上是以内核线程的方式运行的,每个 CPU 都对应一个软中断内核线程,这个软中断内核线程就叫做 ksoftirqd/CPU 编号。那要怎么查看这些线程的运行状况呢?

其实用 ps 命令就可以做到,比如执行下面的指令:

注意,这些线程的名字外面都有中括号,这说明 ps 无法获取它们的命令行参数(cmline)。一般来说,ps 的输出中,名字括在中括号里的,一般都是内核线程。

Linux 中的中断处理程序分为上半部和下半部:

上半部对应硬件中断,用来快速处理中断。

下半部对应软中断,用来异步处理上半部未完成的工作。

Linux 中的软中断包括网络收发、定时、调度、RCU 锁等各种类型,可以通过查看 /proc/softirqs 来观察软中断的运行情况。

在普通的驱动中一般是不会用到softirq,但是由于驱动经常使用的tasklet是基于softirq的,因此,了解softirq机制有助于撰写更优雅的driver。softirq不能动态分配,都是静态定义的。内核已经定义了若干种softirq number,例如网络数据的收发、block设备的数据访问(数据量大,通信带宽高),timer的deferable task(时间方面要求高)。

1、softirq number

和IRQ number一样,对于软中断,linux kernel也是用一个softirq number唯一标识一个softirq,具体定义如下

HI_SOFTIRQ用于高优先级的tasklet,TASKLET_SOFTIRQ用于普通的tasklet。TIMER_SOFTIRQ是for software timer的(所谓software timer就是说该timer是基于系统tick的)。NET_TX_SOFTIRQ和NET_RX_SOFTIRQ是用于网卡数据收发的。BLOCK_SOFTIRQ和BLOCK_IOPOLL_SOFTIRQ是用于block device的。SCHED_SOFTIRQ用于多CPU之间的负载均衡的。HRTIMER_SOFTIRQ用于高精度timer的。RCU_SOFTIRQ是处理RCU的。

2、softirq描述符

softirq是静态定义的,也就是说系统中有一个定义softirq描述符的数组,而softirq number就是这个数组的index。

1、注册softirq

通过调用open_softirq接口函数可以注册softirq的action callback函数

2、触发softirq

软中断的触发时机

1)、irq_exit:在硬中断退出时,会检查local_softirq_pending和preemt_count,如果都符合条件,则执行软中断。

if (!in_interrupt() &&local_softirq_pending())

invoke_softirq()

2)、local_bh_enable:使用此函数开启软中断时,会检查local_softirq_pending,如果都符合条件,则执行软中断。调用链为local_bh_enable()->__local_bh_enable()->do_softirq()。

3)、raise_softirq:主动唤起一个软中断,会首先设置__softirq_pending对应的软中断位为挂起,然后检查in_interrupt,如果不在中断中,则唤起ksoftirq线程执行软中断(ksoftirq是softirq的一种执行机制,在软中的运行流程中会提到)。

3、执行softirq

在中断处理程序中触发软中断是最常见的形式,一个硬件中断处理完成之后。下面的函数在处理完硬件中断之后退出中断处理函数,在irq_exit中会触发软件中断的处理,最后会调用__do_softirq执行软中断。

1、注册

2、唤醒

timer interrupt handler->

timer_tick->

update_process_times->

run_local_timers->

hrtimer_run_queues()和raise_softirq(TIMER_SOFTIRQ)->

raise_softirq_irqoff->

__raise_softirq_irqoff { or_softirq_pending(1UL <<(nr))}

3、执行

对于TIMER_SOFTIRQ来说,每次system clock产生中断时,即一个tick 到来时,在system clock的中断处理函数中会调用run_local_timers来设置TIMER_SOFTIRQ触发条件;也就是当前CPU对应的irq_cpustat_t结构体中的__softirq_pending成员的第TIMER_SOFTIRQ个BIT被置为1。 而当这个条件满足时,ksoftirqd线程(入口函数run_ksoftirqd,cpu_callback:kthread_create(run_ksoftirqd, hcpu, "ksoftirqd/%d", hotcpu))会被唤醒,然后按照下面的流程调用TIMER_SOFTIRQ在数组softirq_vec中注册的action,即run_timer_softirq。

run_ksoftirqd--->do_softirq--->__do_softirq--->softirq_vec[TIMER_SOFTIRQ].action

参考:

http://www.wowotech.net/irq_subsystem/soft-irq.html

https://blog.csdn.net/yhb1047818384/article/details/63687126

https://www.cnblogs.com/lidabo/p/5312856.html


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/6243581.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-03-19
下一篇 2023-03-19

发表评论

登录后才能评论

评论列表(0条)

保存