参考文章: 浅析Linux中的零拷贝技术
内核和用户空间,共享内存。数据copy到内核区后,只需要把地址共享给应用程序即可,无需再copy一次数据到用户空间。
优点:
缺点:
应用:
kafka生产者发送消息到broker的时候,broker的网络接收到数据后,copy到broker的内核空间。然后通过mmap技术,broker会修改消息头,添加一些元数据。所以,写入数据很快。当然顺序IO也是关键技术
内核直接发送数据到socket,无需用户空间参与。
优点:
缺点:
为了节省内核里面的一次copy,我们可以使用优化过的sendfile。该系统方法需要由特定的硬件来支持,并不是所有系统都支持。如下:
sendfile的时候,直接把内核空间的地址传递给socket缓存,DMA直接从指定地址读取数据到流里面。
sendfile只适用于将数据从文件拷贝到套接字上,限定了它的使用范围。Linux在2.6.17版本引入splice系统调用,用于在两个文件描述符中移动数据。
splice调用在两个文件描述符之间移动数据,而不需要数据在内核空间和用户空间来回拷贝。他从fd_in拷贝len长度的数据到fd_out,但是有一方必须是管道设备,这也是目前splice的一些局限性。flags参数有以下几种取值:
splice调用利用了Linux提出的管道缓冲区机制, 所以至少一个描述符要为管道。
以上几种零拷贝技术都是减少数据在用户空间和内核空间拷贝技术实现的,但是有些时候,数据必须在用户空间和内核空间之间拷贝。这时候,我们只能针对数据在用户空间和内核空间拷贝的时机上下功夫了。Linux通常利用写时复制(copy on write)来减少系统开销,这个技术又时常称作COW。
摘录网上:
传统的fork()系统调用直接把所有的资源复制给新创建的进程。这种实现过于简单并且效率低下,因为它拷贝的数据也许并不共享,更糟的情况是,如果新进程打算立即执行一个新的映像,那么所有的拷贝都将前功尽弃。Linux的fork()使用写时拷贝(copy-on-write)页实现。写时拷贝是一种可以推迟甚至免除拷贝数据的技术。内核此时并不复制整个进程地址空间,而是让父进程和子进程共享同一个拷贝。只有在需要写入的时候,数据才会被复制,从而使各个进程拥有各自的拷贝。也就是说,资源的复制只有在需要写入的时候才进行,在此之前,只是以只读方式共享。这种技术使地址空间上的页的拷贝被推迟到实际发生写入的时候。在页根本不会被写入的情况下—举例来说,fork()后立即调用exec()—它们就无需复制了。fork()的实际开销就是复制父进程的页表以及给子进程创建惟一的进程描述符。在一般情况下,进程创建后都会马上运行一个可执行的文件,这种优化可以避免拷贝大量根本就不会被使用的数据(地址空间里常常包含数十兆的数据)。由于Unix强调进程快速执行的能力,所以这个优化是很重要的。这里补充一点:Linux COW与exec没有必然联系。
我总结下: copy-on-write技术其实是一种延迟复制的技术,只有需要用(写)的时候,才去复制数据。
Linux中传统的I/O *** 作是一种缓存I/O,I/O过程中产生的数据传输通常需要在缓冲区中进行多次拷贝。当应用程序需要访问某个数据(read() *** 作)时, *** 作系统会先判断这块数据是否在内核缓冲区中,如果在内核缓冲区中找不到这块数据,内核会先将这块数据从磁盘中读出来放到内核缓冲区中,应用程序再从缓冲区中读取。当应用程序需要将数据输出(write())时,同样需要先将数据拷贝到输出堆栈相关的内核缓冲区,再从内核缓冲区拷贝到输出设备中。
以一次网络请求为例,如下图。对于一次数据读取,用户应用程序只需要调用read()及write()两个系统调用就可以完成一次数据传输,但这个过程中数据经过了四次拷贝,且数据拷贝需要由CPU来调控。在某些情况下,这些数据拷贝会极大地降低系统数据传输的性能,比如文件服务器中,一个文件从磁盘读取后不加修改地回传给调用方,那么这占用CPU时间去处理这四次数据拷贝的性价比是极低的。
一次处理网络调用的系统I/O的流程:
以上可以发现,传统的Linux系统I/O *** 作要进行4次内核空间与应用程序空间的上下文切换,以及4次数据拷贝。
直接内存访问(Direct Memory Access,DMA)是计算机科学中的一种内存访问技术,允许某些电脑内部的硬件子系统独立地读取系统内存,而不需要中央处理器(CPU)的介入。在同等程度的处理器负担下,DMA是一种快速的数据传送方式。这类子系统包括硬盘控制器、显卡、网卡和声卡。
在Linux系统中,当应用程序需要读取文件中的数据时, *** 作系统先分配一些内存,将数据从存储设备读入到这些内存中,然后再将数据传递应用进程;当需要往文件中写数据时, *** 作系统先分配内存接收用户数据,然后再将数据从内存写入磁盘。文件cache管理就是对这些由 *** 作系统分配并用开存储文件数据的内存的管理。
在Linux系统中,文件cache分为两个层面,page cache 与 Buffer cache,每个page cache包含若干个buffer cache。 *** 作系统中,磁盘文件都是由一系列的数据块(Block)组成,buffer cache也叫块缓存,是对磁盘一个数据块的缓存,目的是为了在程序多次访问同一个磁盘块时减少访问时间;而文件系统对数据的组织形式为页,page cache为页缓存,是由多个块缓存构成,其对应的缓存数据块在磁盘上不一定是连续的。也就是说buffer cache缓存文件的具体内容--物理磁盘上的磁盘块,加速对磁盘的访问,而page cache缓存文件的逻辑内容,加速对文件内容的访问。
buffer cache的大小一般为1k,page cache在32位系统上一般为4k,在64位系统上一般为8k。磁盘数据块、buffer cache、page cache及文件的关系如下图:
文件cache的目的是加快对数据文件的访问,同时会有一个预读过程。对于每个文件的第一次读请求,系统会读入所请求的页面并读入紧随其后的几个页面;对于第二次读请求,如果所读页面在cache中,则会直接返回,同时又一个异步预读的过程(将读取页面的下几页读入cache中),如果不在cache中,说明读请求不是顺序读,则会从磁盘中读取文件内容并刷新cache。因此在顺序读取情况下,读取数据的性能近乎内存读取。
DMA允许硬件子系统直接将数据从磁盘读取到内核缓冲区,那么在一次数据传输中,磁盘与内核缓冲区,输出设备与内核缓冲区之间的两次数据拷贝就不需要CPU进行调度,CPU只需要进行缓冲区管理、以及创建和处理DMA。而Page Cache/Buffer Cache的预读取机制则加快了数据的访问效率。如下图所示,还是以文件服务器请求为例,此时CPU负责的数据拷贝次数减少了两次,数据传输性能有了较大的提高。
使用DMA的系统I/O *** 作要进行4次内核空间与应用程序空间的上下文切换,2次CPU数据拷贝及2次DMA数据拷贝。
Mmap内存映射与标准I/O *** 作的区别在于当应用程序需要访问数据时,不需要进行内核缓冲区到应用程序缓冲区之间的数据拷贝。Mmap使得应用程序和 *** 作系统共享内核缓冲区,应用程序直接对内核缓冲区进行读写 *** 作,不需要进行数据拷贝。Linux系统中通过调用mmap()替代read() *** 作。
同样以文件服务器获取文件(不加修改)为例,通过mmap *** 作的一次系统I/O过程如下:
通过以上流程可以看到,数据拷贝从原来的4次变为3次,2次DMA拷贝1次内核空间数据拷贝,CPU只需要调控1次内核空间之间的数据拷贝,CPU花费在数据拷贝上的时间进一步减少(4次上下文切换没有改变)。对于大容量文件读写,采用mmap的方式其读写效率和性能都比较高。(数据页较多,需要多次拷贝)
注:mmap()是让应用程序空间与内核空间共享DMA从磁盘中读取的文件缓冲,也就是应用程序能直接读写这部分PageCache,至于上图中从页缓存到socket缓冲区的数据拷贝只是文件服务器的处理,根据应用程序的不同会有不同的处理,应用程序也可以读取数据后进行修改。重点是虚拟内存映射,内核缓存共享。
djk中nio包下的MappedByteBuffer,官方注释为 A direct byte buffer whose content is a memory-mapped region of a file,即直接字节缓冲区,其内容是文件的内存映射区域。 FileChannel是是nio *** 作文件的类,其map()方法在在实现类中调用native map0()本地方法,该方法通过mmap()实现,因此是将文件从磁盘读取到内核缓冲区,用户应用程序空间直接 *** 作内核空间共享的缓冲区,Java程序通过MappedByteBuffer的get()方法获取内存数据。
MappedByteBuffer允许Java程序直接从内存访问文件,可以将整个文件或文件的一部分映射到内存中,由 *** 作系统进行相关的请求并将内存中的修改写入到磁盘中。
FileChannel map有三种模式
MappedByteBuffer的应用,以rocketMQ为例(简单介绍)。
producer端发送消息最终会被写入到commitLog文件中,consumer端消费时先从订阅的consumeQueue中读取持久化消息的commitLogOffset、size等内容,随后再根据offset、size从commitLog中读取消息的真正实体内容。其中,commitLog是混合部署的,所有topic下的消息队列共用一个commitLog日志数据文件,consumeQueue类似于索引,同时区分开不同topic下不同MessageQueue的消息。
rocketMQ利用MappedByteBuffer及PageCache加速对持久化文件的读写 *** 作。rocketMQ通过MappedByteBuffer将日志数据文件映射到OS的虚拟内存中(PageCache),写消息时首先写入PageCache,通过刷盘方式(异步或同步)将消息批量持久化到磁盘;consumer消费消息时,读取consumeQueue是顺序读取的,虽然有多个消费者 *** 作不同的consumeQueue,对混合部署的commitLog的访问时随机的,但整体上是从旧到新的有序读,加上PageCache的预读机制,大部分情况下消息还是从PageCache中读取,不会产生太多的缺页中断(要读取的消息不在pageCache中)而从磁盘中读取。
rocketMQ利用mmap()使程序与内核空间共享内核缓冲区,直接对PageCache中的文件进行读写 *** 作,加速对消息的读写请求,这是其高吞吐量的重要手段。
使用mmap能减少CPU数据拷贝的次数,但也存在一些问题。
从Linux2.1开始,Linux引入sendfile()简化 *** 作。取消read()/write(),mmap()/write()。
调用sendfile的流程如下:
通过sendfile()的I/O进行了2次应用程序空间与内核空间的上下文切换,以及3次数据拷贝,其中2次是DMA拷贝,1次是CPU拷贝。sendfile相比起mmap,数据信息没有进入到应用程序空间,所以能减少2次上下文切换的开销,而数据拷贝次数是一样的。
上述流程也可以看出,sendfile()适合对文件不加修改的I/O *** 作。
sendfile()只是减少应用程序空间与内核空间的上下文切换,并没有减少CPU数据拷贝的次数,还存在一次内核空间的两个缓冲区的数据拷贝。要实现CPU零数据拷贝,需要引入一些硬件上的支持。在上一小节的sendfile流程中,数据需要从内核缓冲区拷贝到内核空间socket缓冲区,数据都是在内核空间,如果socket缓冲区到网卡的这次DMA数据传输 *** 作能直接读取到内核缓冲区中的数据,那么这一次的CPU数据拷贝也就能避免。要达到这个目的,DMA需要知道存有文件位置和长度信息的缓冲区描述符,即socket缓冲区需要从内核缓冲区接收这部分信息,DMA需要支持数据收集功能。
sendfile()调用后,数据从磁盘文件拷贝到内核缓冲区中,然后将文件位置和长度信息的缓冲区描述符传递到socket缓冲区,此时数据并没有被拷贝。之后网卡子系统根据socket缓冲区中的文件信息利用DMA技术收集拷贝数据。整个过程进行了2次内核空间和应用程序空间的上下文切换,及2次DMA数据拷贝,CPU不需要参与数据拷贝工作,从而实现零拷贝。当然DMA收集拷贝功能需要硬件和驱动程序的支持。
在 *** 作系统中,硬件和软件之间的数据传输可以通过DMA来进行,DMA进行数据传输的过程几乎不需要CPU参与,但是在内核缓冲区(页缓存)与应用程序缓冲区之间的数据拷贝并没有类似于DMA之类的工具可以使用,mmap、sendfile都是为了减少数据在内核空间与应用程序空间传输时的数据拷贝和上下文切换次数,有效地改善数据在两者之间传递的效率。
linux *** 作系统的零拷贝技术并不单指某一种方式,现有的零拷贝技术种类非常多,在不同的Linux内核版本上有不同的支持。常见的,如果应用程序需要修改数据,则使用mmap(),如果只进行文件数据传输,则可选择sendfile()。
另外,关于零拷贝技术适用于什么场景?在上述的描述中,数据在传递过程中,除了mmap外,应用程序和 *** 作系统几乎是没有改变数据的,mmap的内存映射也是没有改变数据的,也就是说在静态资源的读取场景下,零拷贝更能发挥作用。正如其名,拷贝是在不改变数据的情况下,零是利用手段去减少CPU参与数据拷贝的次数,以释放CPU去进行其他系统调用与计算。
维基上是这么描述零拷贝的:零拷贝描述的是CPU不执行拷贝数据从一个存储区域到另一个存储区域的任务,这通常用于通过网络传输一个文件时以减少CPU周期和内存带宽。
减少甚至完全避免不必要的CPU拷贝,从而让CPU解脱出来去执行其他的任务
减少内存带宽的占用
通常零拷贝技术还能够减少用户空间和 *** 作系统内核空间之间的上下文切换
从Linux系统上看,除了引导系统的BIN区,整个内存空间主要被分成两个部分: 内核空间(Kernel space) 、 用户空间(User space) 。“用户空间”和“内核空间”的空间、 *** 作权限以及作用都是不一样的。
内核空间是Linux自身使用的内存空间,主要提供给程序调度、内存分配、连接硬件资源等程序逻辑使用;
用户空间则是提供给各个进程的主要空间。用户空间不具有访问内核空间资源的权限,因此如果应用程序需要使用到内核空间的资源,则需要通过系统调用来完成:从用户空间切换到内核空间,然后在完成相关 *** 作后再从内核空间切换回用户空间。
① 直接 I/O:对于这种数据传输方式来说,应用程序可以直接访问硬件存储, *** 作系统内核只是辅助数据传输。这种方式依旧存在用户空间和内核空间的上下文切换,但是硬件上的数据不会拷贝一份到内核空间,而是直接拷贝至了用户空间,因此直接I/O不存在内核空间缓冲区和用户空间缓冲区之间的数据拷贝。
② 在数据传输过程中,避免数据在用户空间缓冲区和系统内核空间缓冲区之间的CPU拷贝,以及数据在系统内核空间内的CPU拷贝。本文主要讨论的就是该方式下的零拷贝机制。
③ copy-on-write(写时复制技术):在某些情况下,Linux *** 作系统的内核空间缓冲区可能被多个应用程序所共享, *** 作系统有可能会将用户空间缓冲区地址映射到内核空间缓存区中。当应用程序需要对共享的数据进行修改的时候,才需要真正地拷贝数据到应用程序的用户空间缓冲区中,并且对自己用户空间的缓冲区的数据进行修改不会影响到其他共享数据的应用程序。所以,如果应用程序不需要对数据进行任何修改的话,就不会存在数据从系统内核空间缓冲区拷贝到用户空间缓冲区的 *** 作。
下面我们通过一个Java非常常见的应用场景:将系统中的文件发送到远端(该流程涉及:磁盘上文件 ——>内存(字节数组) ——>传输给用户/网络)来详细展开传统I/O *** 作和通过零拷贝来实现的I/O *** 作。
① 发出read系统调用:导致用户空间到内核空间的上下文切换(第一次上下文切换)。通过DMA引擎将文件中的数据从磁盘上读取到内核空间缓冲区(第一次拷贝: hard drive ——>kernel buffer)。
② 将内核空间缓冲区的数据拷贝到用户空间缓冲区(第二次拷贝: kernel buffer ——>user buffer),然后read系统调用返回。而系统调用的返回又会导致一次内核空间到用户空间的上下文切换(第二次上下文切换)。
③ 发出write系统调用:导致用户空间到内核空间的上下文切换(第三次上下文切换)。将用户空间缓冲区中的数据拷贝到内核空间中与socket相关联的缓冲区中(即,第②步中从内核空间缓冲区拷贝而来的数据原封不动的再次拷贝到内核空间的socket缓冲区中。)(第三次拷贝: user buffer ——>socket buffer)。
④ write系统调用返回,导致内核空间到用户空间的再次上下文切换(第四次上下文切换)。通过DMA引擎将内核缓冲区中的数据传递到协议引擎(第四次拷贝: socket buffer ——>protocol engine),这次拷贝是一个独立且异步的过程。
Q: 你可能会问独立和异步这是什么意思?难道是调用会在数据被传输前返回?
A: 事实上调用的返回并不保证数据被传输;它甚至不保证传输的开始。它只是意味着将我们要发送的数据放入到了一个待发送的队列中,在我们之前可能有许多数据包在排队。除非驱动器或硬件实现优先级环或队列,否则数据是以先进先出的方式传输的。
总的来说,传统的I/O *** 作进行了4次用户空间与内核空间的上下文切换,以及4次数据拷贝。其中4次数据拷贝中包括了2次DMA拷贝和2次CPU拷贝。
Q: 传统I/O模式为什么将数据从磁盘读取到内核空间缓冲区,然后再将数据从内核空间缓冲区拷贝到用户空间缓冲区了?为什么不直接将数据从磁盘读取到用户空间缓冲区就好?
A: 传统I/O模式之所以将数据从磁盘读取到内核空间缓冲区而不是直接读取到用户空间缓冲区,是为了减少磁盘I/O *** 作以此来提高性能。因为OS会根据局部性原理在一次read()系统调用的时候预读取更多的文件数据到内核空间缓冲区中,这样当下一次read()系统调用的时候发现要读取的数据已经存在于内核空间缓冲区中的时候只要直接拷贝数据到用户空间缓冲区中即可,无需再进行一次低效的磁盘I/O *** 作(注意:磁盘I/O *** 作的速度比直接访问内存慢了好几个数量级)。
Q: 既然系统内核缓冲区能够减少磁盘I/O *** 作,那么我们经常使用的BufferedInputStream缓冲区又是用来干啥的?
A: BufferedInputStream的作用是会根据情况自动为我们预取更多的数据到它自己维护的一个内部字节数据缓冲区中,这样做能够减少系统调用的次数以此来提供性能。
总的来说内核空间缓冲区的一大用处是为了减少磁盘I/O *** 作,因为它会从磁盘中预读更多的数据到缓冲区中。而BufferedInputStream的用处是减少“系统调用”。
DMA(Direct Memory Access) ———— 直接内存访问 :DMA是允许外设组件将I/O数据直接传送到主存储器中并且传输不需要CPU的参与,以此将CPU解放出来去完成其他的事情。
而用户空间与内核空间之间的数据传输并没有类似DMA这种可以不需要CPU参与的传输工具,因此用户空间与内核空间之间的数据传输是需要CPU全程参与的。所有也就有了通过零拷贝技术来减少和避免不必要的CPU数据拷贝过程。
① 发出sendfile系统调用,导致用户空间到内核空间的上下文切换(第一次上下文切换)。通过DMA引擎将磁盘文件中的内容拷贝到内核空间缓冲区中(第一次拷贝: hard drive ——>kernel buffer)。然后再将数据从内核空间缓冲区拷贝到内核中与socket相关的缓冲区中(第二次拷贝: kernel buffer ——>socket buffer)。
② sendfile系统调用返回,导致内核空间到用户空间的上下文切换(第二次上下文切换)。通过DMA引擎将内核空间socket缓冲区中的数据传递到协议引擎(第三次拷贝: socket buffer ——>protocol engine)
总的来说,通过sendfile实现的零拷贝I/O只使用了2次用户空间与内核空间的上下文切换,以及3次数据的拷贝。其中3次数据拷贝中包括了2次DMA拷贝和1次CPU拷贝。
Q: 但通过是这里还是存在着一次CPU拷贝 *** 作,即,kernel buffer ——>socket buffer。是否有办法将该拷贝 *** 作也取消掉了?
A: 有的。但这需要底层 *** 作系统的支持。从Linux 2.4版本开始, *** 作系统底层提供了scatter/gather这种DMA的方式来从内核空间缓冲区中将数据直接读取到协议引擎中,而无需将内核空间缓冲区中的数据再拷贝一份到内核空间socket相关联的缓冲区中。
从Linux 2.4版本开始, *** 作系统底层提供了带有scatter/gather的DMA来从内核空间缓冲区中将数据读取到协议引擎中。这样一来待传输的数据可以分散在存储的不同位置上,而不需要在连续存储中存放。那么从文件中读出的数据就根本不需要被拷贝到socket缓冲区中去,只是需要将缓冲区描述符添加到socket缓冲区中去,DMA收集 *** 作会根据缓冲区描述符中的信息将内核空间中的数据直接拷贝到协议引擎中。
① 发出sendfile系统调用,导致用户空间到内核空间的上下文切换(第一次上下文切换)。通过DMA引擎将磁盘文件中的内容拷贝到内核空间缓冲区中(第一次拷贝: hard drive ——>kernel buffer)。
② 没有数据拷贝到socket缓冲区。取而代之的是只有相应的描述符信息会被拷贝到相应的socket缓冲区当中。该描述符包含了两方面的信息:a)kernel buffer的内存地址;b)kernel buffer的偏移量。
③ sendfile系统调用返回,导致内核空间到用户空间的上下文切换(第二次上下文切换)。DMA gather copy根据socket缓冲区中描述符提供的位置和偏移量信息直接将内核空间缓冲区中的数据拷贝到协议引擎上(第二次拷贝: kernel buffer ——>protocol engine),这样就避免了最后一次CPU数据拷贝。
总的来说,带有DMA收集拷贝功能的sendfile实现的I/O只使用了2次用户空间与内核空间的上下文切换,以及2次数据的拷贝,而且这2次的数据拷贝都是非CPU拷贝。这样一来我们就实现了最理想的零拷贝I/O传输了,不需要任何一次的CPU拷贝,以及最少的上下文切换。
在linux2.6.33版本之前 sendfile指支持文件到套接字之间传输数据,即in_fd相当于一个支持mmap的文件,out_fd必须是一个socket。但从linux2.6.33版本开始,out_fd可以是任意类型文件描述符。所以从linux2.6.33版本开始sendfile可以支持“文件到文件”和“文件到套接字”之间的数据传输。
Q: 对于上面的第三点,如果我们需要对数据进行 *** 作该怎么办了?
A: Linux提供了mmap零拷贝来实现我们的需求。
mmap(内存映射)是一个比sendfile昂贵但优于传统I/O的方法。
① 发出mmap系统调用,导致用户空间到内核空间的上下文切换(第一次上下文切换)。通过DMA引擎将磁盘文件中的内容拷贝到内核空间缓冲区中(第一次拷贝: hard drive ——>kernel buffer)。
② mmap系统调用返回,导致内核空间到用户空间的上下文切换(第二次上下文切换)。接着用户空间和内核空间共享这个缓冲区,而不需要将数据从内核空间拷贝到用户空间。因为用户空间和内核空间共享了这个缓冲区数据,所以用户空间就可以像在 *** 作自己缓冲区中数据一般 *** 作这个由内核空间共享的缓冲区数据。
③ 发出write系统调用,导致用户空间到内核空间的上下文切换(第三次上下文切换)。将数据从内核空间缓冲区拷贝到内核空间socket相关联的缓冲区(第二次拷贝: kernel buffer ——>socket buffer)。
④ write系统调用返回,导致内核空间到用户空间的上下文切换(第四次上下文切换)。通过DMA引擎将内核空间socket缓冲区中的数据传递到协议引擎(第三次拷贝: socket buffer ——>protocol engine)
总的来说,通过mmap实现的零拷贝I/O进行了4次用户空间与内核空间的上下文切换,以及3次数据拷贝。其中3次数据拷贝中包括了2次DMA拷贝和1次CPU拷贝。
FileChannel中大量使用了我们上面所提及的零拷贝技术。
FileChannel的map方法会返回一个MappedByteBuffer。MappedByteBuffer是一个直接字节缓冲器,该缓冲器的内存是一个文件的内存映射区域。map方法底层是通过mmap实现的,因此将文件内存从磁盘读取到内核缓冲区后,用户空间和内核空间共享该缓冲区。
MappedByteBuffer内存映射文件是一种允许Java程序直接从内存访问的一种特殊的文件。我们可以将整个文件或者整个文件的一部分映射到内存当中,那么接下来是由 *** 作系统来进行相关的页面请求并将内存的修改写入到文件当中。我们的应用程序只需要处理内存的数据,这样可以实现非常迅速的I/O *** 作。
只读模式来说,如果程序试图进行写 *** 作,则会抛出ReadOnlyBufferException异常
读写模式表明,对结果对缓冲区所做的修改将最终广播到文件。但这个修改可能会也可能不会被其他映射了相同文件程序可见。
私有模式来说,对结果缓冲区的修改将不会被广播到文件并且也不会对其他映射了相同文件的程序可见。取而代之的是,它将导致被修改部分缓冲区独自拷贝一份到用户空间。这便是OS的“copy on write”原则。
如果 *** 作系统底层支持的话transferTo、transferFrom也会使用相关的零拷贝技术来实现数据的传输。所以,这里是否使用零拷贝必须依赖于底层的系统实现。
转自: https://www.jianshu.com/p/e76e3580e356
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)