首先,Linux中的信号可以通过kill -l命令获取,如下图所示:
如上图所示,编号为1 ~ 31的信号为传统UNIX支持的信号,是不可靠信号(非实时的),编号为32 ~ 63的信号是后来扩充的,称做可靠信号(实时信号)。不可靠信号和可靠信号的区别在于前者不支持排队,可能会造成信号丢失,而后者不会。
其次,SIGUSR1 ,这是留给用户使用的信号。一般在编程中使用。举例说明:sigqueue向本进程发送数据的信号,C语言代码如下 :
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <signal.h>
#include <unistd.h>
void myhandler(int signo,siginfo_t *si,void *ucontext)
int main(){
union sigval val//定义一个携带数据的共用体
struct sigaction oldact,act
act.sa_sigaction=myhandler
act.sa_flags=SA_SIGINFO//表示使用sa_sigaction指示的函数,处理完恢复默认,不阻塞处理过程中到达下在被处理的信号
//注册信号处理函数
sigaction(SIGUSR1,&act,&oldact)
char data[100]
int num=0
while(num<10){
sleep(2)
printf("等待SIGUSR1信号的到来\n")
sprintf(data,"%d",num++)
val.sival_ptr=data
sigqueue(getpid(),SIGUSR1,val)//向本进程发送一个信号
}
}
void myhandler(int signo,siginfo_t *si,void *ucontext){
printf("已经收到SIGUSR1信号\n")
printf("%s\n",(char*)(si->si_ptr))
}
socket - Linux 套接字接口本手册页描述了 Linux 网络套接字层用户接口。 套接字是用户进程和内核中网络协议栈之间的统一接口。 协议模块分为协议族(protocol families)(如 AF_INET、AF_IPX 和 AF_PACKET)和套接字类型(socket types)(如 SOCK_STREAM 或 SOCK_DGRAM)。 有关families和types的更多信息,请参阅 socket(2) 。
用户进程使用这些函数来发送或接收数据包以及执行其他套接字 *** 作。 有关更多信息,请参阅它们各自的手册页。
socket(2) 创建套接字,connect(2) 将套接字连接到远程套接字地址,bind(2) 函数将套接字绑定到本地套接字地址,listen(2) 告诉套接字应接受新连接, accept(2) 用于获取具有新传入连接的新套接字。 socketpair(2) 返回两个连接的匿名套接字(仅为少数本地families如 AF_UNIX 实现)
send(2)、sendto(2) 和sendmsg(2) 通过套接字发送数据,而recv(2)、recvfrom(2)、recvmsg(2) 从套接字接收数据。 poll(2) 和 select(2) 等待数据到达或准备好发送数据。 此外,还可以使用 write(2)、writev(2)、sendfile(2)、read(2) 和 readv(2) 等标准 I/O *** 作来读取和写入数据。
getsockname(2) 返回本地套接字地址, getpeername(2) 返回远程套接字地址。 getsockopt(2) 和 setsockopt(2) 用于设置或获取套接字层或协议选项。 ioctl(2) 可用于设置或读取一些其他选项。
close(2) 用于关闭套接字。 shutdown(2) 关闭全双工套接字连接的一部分。
套接字不支持使用非零位置查找或调用 pread(2) 或 pwrite(2)。
通过使用 fcntl(2) 在套接字文件描述符上设置 O_NONBLOCK 标志,可以在套接字上执行非阻塞 I/O。 然后所有会阻塞的 *** 作(通常)将返回 EAGAIN( *** 作应稍后重试); connect(2) 将返回 EINPROGRESS 错误。 然后用户可以通过 poll(2) 或 select(2) 等待各种事件。
如果不使用poll(2) 和 select(2) ,还让内核通过 SIGIO 信号通知应用程序有关事件的信息。 为此,必须通过 fcntl(2) 在套接字文件描述符上设置 O_ASYNC 标志,并且必须通过 sigaction(2) 安装有效的 SIGIO 信号处理程序。 请参阅下面的信号讨论。
每个套接字域(families)都有自己的套接字地址格式,具有特定于域的地址结构。 这些结构的首字段都是整数类型的“家族”字段(类型为 sa_family_t),即指出自己的套接字域或者说是protocol families。 这允许对所有套接字域可以使用统一的系统调用(例如,connect(2)、bind(2)、accept(2)、getsockname(2)、getpeername(2)),并通过套接字地址来确定特定的域。
为了允许将任何类型的套接字地址传递给套接字 API 中的接口,定义了类型 struct sockaddr。 这种类型的目的纯粹是为了允许将特定于域的套接字地址类型转换为“通用”类型,以避免编译器在调用套接字 API 时发出有关类型不匹配的警告。
struct sockaddr 以及在AF_INET常用的地址结构struct sockaddr_in如下所示,sockaddr_in.sin_zero是占位符:
此外,套接字 API 提供了数据类型 struct sockaddr_storage。 这种类型适合容纳所有支持的特定于域的套接字地址结构; 它足够大并且正确对齐。 (特别是它足够大,可以容纳 IPv6 套接字地址。)同struct sockaddr一样,该结构体包括以下字段,可用于标识实际存储在结构体中的套接字地址的类型: sa_family_t ss_family
sockaddr_storage 结构在必须以通用方式处理套接字地址的程序中很有用(例如,必须同时处理 IPv4 和 IPv6 套接字地址的程序)。
下面列出的套接字选项可以使用setsockopt(2) 设置并使用getsockopt(2) 读取。
当写入已关闭(由本地或远程端)的面向连接的套接字时,SIGPIPE 被发送到写入进程并返回 EPIPE。 当写调用指定 MSG_NOSIGNAL 标志时,不发送信号。
当使用 FIOSETOWN fcntl(2) 或 SIOCSPGRP ioctl(2) 请求时,会在 I/O 事件发生时发送 SIGIO。 可以在信号处理程序中使用 poll(2) 或 select(2) 来找出事件发生在哪个套接字上。 另一种方法(在 Linux 2.2 中)是使用 F_SETSIG fcntl(2) 设置实时信号; 实时信号的处理程序将使用其 siginfo_t 的 si_fd 字段中的文件描述符调用。 有关更多信息,请参阅 fcntl(2)。
在某些情况下(例如,多个进程访问单个套接字),当进程对信号做出反应时,导致 SIGIO 的条件可能已经消失。 如果发生这种情况,进程应该再次等待,因为 Linux 稍后会重新发送信号。
核心套接字网络参数可以通过目录 /proc/sys/net/core/ 中的文件访问。
These operations can be accessed using ioctl(2):
error = ioctl(ip_socket, ioctl_type, &value_result)
Valid fcntl(2) operations:
Linux assumes that half of the send/receive buffer is used for internal kernel structuresthus the values in the corresponding /proc files are twice what can be observed on the wire. Linux will allow port reuse only with the SO_REUSEADDR option when this option was set both in the previous program that performed a bind(2) to the port and in the program that wants to reuse the port. This differs from some implementations (e.g., FreeBSD) where only the later program needs to set the SO_REUSEADDR option. Typically this difference is invisible, since, for example, a server program is designed to always set this option.
用于进程间通信,通信机制由 *** 作系统保证,比较稳定。
在linux中可以通过kill -l查看所有信号的类型。
kill -信号类型 进程ID
int kill(pid_t pid, int sig)
入参pid :
pid >0: 发送信号给指定的进程。
pid = 0: 发送信号给 与调用kill函数进程属于同一进程组的所有进程。
pid <0: 取|pid|发给对应进程组。
pid = -1:发送给进程有权限发送的系统中所有进程。
sig :信号类型。
返回值 :成功:0;失败:-1 (ID非法,信号非法,普通用户杀init进程等权级问题),设置errno
以OpenHarmony源码为例,应用ANR后,AbilityManagerService会通知应用dump堆栈信息,就是通过信号量做的。
头文件位置 :
include <signal.h>
函数解释 :
typedef void (*sighandler_t)(int)
sighandler_t signal(int signum, sighandler_t handler)
当接收到指定的信号signum时,就会跳转到参数handler指定的函数执行。其中handler的入参是信号值。
函数原型 :
signum参数指出要捕获的信号类型,act参数指定新的信号处理方式,oldact参数输出先前信号的处理方式(如果不为NULL的话)。
sigaction结构体
sa_handler 信号处理函数
sa_mask 在处理该信号时可以暂时将sa_mask 指定的信号集搁置
sa_flags 指定一组修改信号行为的标志。 它由以下零个或多个的按位或组成
SA_RESETHAND:当调用信号处理函数时,将信号的处理函数重置为缺省值SIG_DFL
SA_RESTART:如果信号中断了进程的某个系统调用,则系统自动启动该系统调用
SA_NODEFER :一般情况下, 当信号处理函数运行时,内核将阻塞该给定信号。但是如果设置了 SA_NODEFER标记, 那么在该信号处理函数运行时,内核将不会阻塞该信号
sa_restorer 是一个替代的信号处理程序,当设置SA_SIGINFO时才会用它。
相关函数
int sigemptyset( sigset_t *set)
sigemptyset()用来将参数set信号集初始化并清空。
执行成功则返回0,如果有错误则返回-1。
完整示例
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)