Linux *** 作系统的知识点总结

Linux *** 作系统的知识点总结,第1张

Linux *** 作系统的基础知识并不是很难理解,熟悉掌握基础知识能更好的学习Linux。下面由我为大家整理了Linux *** 作系统的知识点总结的相关知识,希望对大家有帮助!

Linux *** 作系统的知识点总结1. *** 作系统总体介绍

•CPU: 就像人的大脑,主要负责相关事情的判断以及实际处理的机制。

查询指令: cat /proc/cpuinfo

内存: 大脑中的记忆区块,将皮肤、眼睛等所收集到的信息记录起来的地方,以供CPU进行判断。查询指令: cat /proc/meminfo

物理内存

物理内存,就是我们将内存条插在主板内存槽上的内存条的容量的大小。看计算机配置的时候,主要看的就是这个物理内存

虚拟内存

Windows中运用了虚拟内存技术,即拿出一部分硬盘空间来充当内存使用,当内存占用完时,电脑就会自动调用硬盘来充当内存,以缓解内存的紧张。

关系:windows中虚拟内存和物理内存可能都会被使用,Linux中,只有物理内存使用完了,才会使用虚拟内存

•硬盘: 大脑中的记忆区块,将重要的数据记录起来,以便未来再次使用这些数据。

查询指令: fdisk -l (需要root权限)

Linux *** 作系统的知识点总结2.内存和硬盘的关系

具体命令后面会介绍

Linux *** 作系统的知识点总结3. *** 作系统监控命令>单独写一份

•vmstat

•sar

•iostat

•top

•free

•uptime

•netstat

•ps

•strace

•lsof

Linux *** 作系统的知识点总结4.如何分析 *** 作系统

实际流程: 读数据》数据>硬盘》虚拟内存(swaP)》内存》cpu缓存》执行队列

分析方向,正好相反

Linux *** 作系统的知识点总结4.各个部分常出现的漏洞

•CPU: 容易出现该类瓶颈的邮件服务器、动态web服务器

•内存: 容易出现该类瓶颈的打印服务器、数据库服务器、静态web服务器

•磁盘I/O: 频繁读写 *** 作的项目

•网络带宽: 频繁大量上传下载项目

Linux *** 作系统的知识点总结5.linux本身的一些优化

1. 系统安装优化

当安装linux系统时,磁盘划分、 SWAP内存的分配都直接影响系统性能。对于虚拟内存SWAP的设定,现在已经没有了所谓虚拟内存是物理内存两倍的要求,但是根据经验,如果内存较小(物理内存小于4GB),一般设置SWAP交换分区大小为内存的2倍如果物理内存大约4GB小于16GB,可以设置SWAP大小等于或者略小于物理内存即可如果内存在16GB以上,原则上可以设置SWAP为0,但最好设置一定大小的SWAP

• 2. 内核参数优化

例如,如果系统部署的Oracle数据库应用,那么就需要对系统共享内存段( kernel.shmmax, kenerl.shmmni, kernel.shmall)、

系统信号量( kernel.sem)、文件句柄( fs.file0max)等参数进行优化设置如果部署的WEB应用,那么就需要根据web应用特性进行网络参数的优化,例如修改net.ipv4.ip_local_port_range、net.ipv4.tc_tw_reuse、 net.core.somaxconn等网络

内核参数

• 3. 文件系统优化

在linux下可选的文件系统有ext2,、 ext3、 xfs、 ReiserFS

linux标准文件系统是从VFS开始,然后ext、 ext2, ext2是linux上的标准文件系统, ext3是在ext2基础上增加日志形成的。从VFS到ext3,设计思想没有太大变化,都是早期UNIX家族基于超级块和inode的设计理念设计而成。XFS文件系统是SGI开发的一个高级日志文件系统,通过分布处理磁盘请求、定位数据、保持cache的一致性来提供对文件系统数据的低延迟、高带宽的访问,因此XFS极具伸缩性,非常健壮,具有优秀的日志记录功能、可扩展性强、快速写入等优点。ReiserFS在Hans Reiser领导下开发出来的一款高性能的日志文件系统,通过完全平衡树来管理数据,包括文件数据、文件名及日志支持等。与ext2、 ext3相比,最大的优点是访问性能和安全性大幅提升。具有高效、合理利用磁盘空间,先将的日志管理机制,特意的搜寻方式,海量磁盘存储等优点

Linux *** 作系统的知识点总结5.重点知识

物理内存和虚拟内存

1.如何查看物理内存和虚拟内存?

Top 命令可以查看物理内存和虚拟内存的数值

2.Buffer

是硬盘控制器上的一块内存芯片,具有极快的存取速度,它是硬盘内部存储和外界接口之间的缓冲器。由于硬盘的内部数据传输速度和外界介面传输速度不同,缓存在其中起到一个缓冲的作用。缓存的大小与速度是直接关系到硬盘的传输速度的重要因素,能够大幅度地提高硬盘整体性能。

3.Cache

CPU缓存(Cache Memory)是位于CPU与内存之间的临时存储器,它的容量比内存小的多但是交换速度却比内存要快得多。缓存的出现主要是为了解决CPU运算速度与内存读写速度不匹配的矛盾,因为CPU运算速度要比内存读写速度快很多,这样会使CPU花费很长时间等待数据到来或把数据写入内存。在缓存中的数据是内存中的一小部分,但这一小部分是短时间内CPU即将访问的,当CPU调用大量数据时,就可避开内存直接从缓存中调用,从而加快读取速度

4.CPU中断

当CPU执行完一条现行指令时,如果外设向CPU发出中断请求,那么CPU在满足响应的情况下,将发出中断响应信号,与此同时关闭中断,表示CPU不在受理另外一个设备的中断。这时,CPU将寻找中断请求源是哪一个设备,并保存CPU自己的程序计数器(PC)的内容。然后,他将转移到处理该中断源的中断服务程序。CPU在保存现场信息,设备服务(如交换数据)以后,将恢复现场信息。在这些动作完成以后,开放中断,并返回到原来被中断的主程序的下一条指令。

5.上下文切换

上下文切换(Context Switch) 或者环境切换

多任务系统中,上下文切换是指CPU的控制权由运行任务转移到另外一个就绪任务时所发生的事件。

在 *** 作系统中,CPU切换到另一个进程需要保存当前进程的状态并恢复另一个进程的状态:当前运行任务转为就绪(或者挂起、删除)状态,另一个被选定的就绪任务成为当前任务。上下文切换包括保存当前任务的运行环境,恢复将要运行任务的运行环境。

进程上下文用进程的PCB(进程控制块,也称为PCB,即任务控制块)表示,它包括进程状态,CPU寄存器的值等。

通常通过执行一个状态保存来保存CPU当前状态,然后执行一个状态恢复重新开始运行。

上下文切换会对性能造成负面影响。然而,一些上下文切换相对其他切换而言更加昂贵其中一个更昂贵的上下文切换是跨核上下文切换(Cross-Core Context Switch)。一个线程可以运行在一个专用处理器上,也可以跨处理器。由单个处理器服务的线程都有处理器关联(Processor Affinity),这样会更加有效。在另一个处理器内核抢占和调度线程会引起缓存丢失,作为缓存丢失和过度上下文切换的结果要访问本地内存。总之,这称为“跨核上下文切换”。

6.进程和线程

进程概念

进程是表示资源分配的基本单位,又是调度运行的基本单位。例如,用户运行自己的程序,系统就创建一个进程,并为它分配资源,包括各种表格、内存空间、磁盘空间、I/O设备等。然后,把该进程放人进程的就绪队列。进程调度程序选中它,为它分配CPU以及其它有关资源,该进程才真正运行。所以,进程是系统中的并发执行的单位。

线程概念

线程是进程中执行运算的最小单位,亦即执行处理机调度的基本单位。如果把进程理解为在逻辑上 *** 作系统所完成的任务,那么线程表示完成该任务的许多可能的子任务之一

进程和线程的关系

(1)一个线程只能属于一个进程,而一个进程可以有多个线程,但至少有一个线程。 (2)资源分配给进程,同一进程的所有线程共享该进程的所有资源。

(3)处理机分给线程,即真正在处理机上运行的是线程。

(4)线程在执行过程中,需要协作同步。不同进程的线程间要利用消息通信的办法实现同步。

前言

I/O Wait是一个需要使用高级的工具来debug问题原因,当然也有许多基本工具的高级用法。I/O wait的问题难以定位的原因是:因为我们有很多工具可以告诉你I/O 受限了,但是并没有告诉你具体是哪个进程引起的。

1. 如何确认,是否是I/O问题导致系统缓慢

确认是否是I/O导致的系统缓慢我们可以使用多个命令,但是,最简单的是unix的命令 top

# top

top - 14:31:20 up 35 min, 4 users, load average: 2.25, 1.74, 1.68

Tasks: 71 total, 1 running, 70 sleeping, 0 stopped, 0 zombie

Cpu(s): 2.3%us, 1.7%sy, 0.0%ni, 0.0%id, 96.0%wa, 0.0%hi, 0.0%si, 0.0%st

Mem: 245440k total, 241004k used, 4436k free, 496k buffers

Swap: 409596k total, 5436k used, 404160k free, 182812k cached

从CPU这行,可以发现CPU的io wait;这里是96.0%。越高就代表CPU用于io wait的资源越多。

2. 找出哪个磁盘正在被写入

上边的top命令从一个整体上说明了I/O wait,但是并没有说明是哪块磁盘影响的,想知道是哪块磁盘引发的问题,可以使用另外一个命令 iostat 命令

$ iostat -x 2 5

avg-cpu: %user %nice %system %iowait %steal %idle

  3.66 0.00 47.64 48.69 0.00 0.00

Device: rrqm/s wrqm/s r/s w/s rkB/s wkB/s avgrq-sz avgqu-sz await r_await w_await svctm %util

sda 44.50 39.27 117.28 29.32 11220.94 13126.70 332.17 65.77 462.79 9.80 2274.71 7.60 111.41

dm-0 0.00 0.00 83.25 9.95 10515.18 4295.29 317.84 57.01 648.54 16.73 5935.79 11.48 107.02

dm-1 0.00 0.00 57.07 40.84 228.27 163.35 8.00 93.84 979.61 13.94 2329.08 10.93 107.02

iostat 会每2秒更新一次,一共打印5次信息, -x 的选项是打印出扩展信息

第一个iostat 报告会打印出系统最后一次启动后的统计信息,这也就是说,在多数情况下,第一个打印出来的信息应该被忽略,剩下的报告,都是基于上一次间隔的时间。举例子来说,这个命令会打印5次,第二次的报告是从第一次报告出来一个后的统计信息,第三次是基于第二次 ,依次类推

所以,一定记住:第一个忽略!

在上面的例子中,sda的%utilized 是111.41%,这个很好的说明了有进程正在写入到sda磁盘中。

除了%utilized 外,我们可以从iostat得到更加丰富的资源信息,例如每毫秒读写请求(rrqm/s &wrqm/s)),每秒读写的((r/s &w/s)。在上边的例子中,我们的项目看起来正在读写非常多的信息。这个对我们查找相应的进程非常有用。

3. 找出导致高IO的进程

# iotop

Total DISK READ: 8.00 M/s | Total DISK WRITE: 20.36 M/s

  TID PRIO USER DISK READ DISK WRITE SWAPIN IO>COMMAND

15758 be/4 root 7.99 M/s 8.01 M/s 0.00 % 61.97 % bonnie++ -n 0 -u 0 -r 239 -s 478 -f -b -d /tmp

最简单的方法就是用iotop找出哪个进程用了最多的存储资源,从上面可以看到是bonnie++。

iotop很好用,但是不是默认安装的。

如果没有iotop,下面的方式也可以让你有种方法缩小范围,尽快找到是哪个进程。

ps 命令对内存和CPU有一个统计,但是他没有对磁盘I/O的统计,虽然他没有显示磁盘I/O,但是它显示进行的状态,我们可以用来知道一个进程是否正在等待I/O

主要的进程状态有:

PROCESS STATE CODES

D uninterruptible sleep (usually IO)

R running or runnable (on run queue)

S interruptible sleep (waiting for an event to complete)

T stopped, either by a job control signal or because it is being traced.

W paging (not valid since the 2.6.xx kernel)

X dead (should never be seen)

Z defunct ("zombie") process, terminated but not reaped by its parent.

等待I/O的进程的状态一般是“uninterruptible sleep”,或者“D”,我们可以很容易的查找到正在等待I/O的进程

# for x in `seq 1 1 10`do ps -eo state,pid,cmd | grep "^D"echo "----"sleep 5done

D 248 [jbd2/dm-0-8]

D 16528 bonnie++ -n 0 -u 0 -r 239 -s 478 -f -b -d /tmp

----

D 22 [kswapd0]

D 16528 bonnie++ -n 0 -u 0 -r 239 -s 478 -f -b -d /tmp

----

D 22 [kswapd0]

D 16528 bonnie++ -n 0 -u 0 -r 239 -s 478 -f -b -d /tmp

----

D 22 [kswapd0]

D 16528 bonnie++ -n 0 -u 0 -r 239 -s 478 -f -b -d /tmp

----

D 16528 bonnie++ -n 0 -u 0 -r 239 -s 478 -f -b -d /tmp

上边的例子会循环的输出状态是D的进程,每5秒一次,一共10次

从输出我们可以知道 bonnie++ 的pid是16528 ,在waiting,bonnie++看起来就是我们想找到的进程,但是,只是从它的状态,我们没有办法证明就是bonnie++引起的I/O等待。

为了证明,我们可以可以查看/proc,每个进程目录下都有一个叫io的文件,里边保存这和iotop类似的信息。

# cat /proc/16528/io

rchar: 48752567

wchar: 549961789

syscr: 5967

syscw: 67138

read_bytes: 49020928

write_bytes: 549961728

cancelled_write_bytes: 0

read_bytes和write_bytes是这个进程从磁盘读写的字节,在这个例子中,bonnie++进程读取了46M的数据并且写入了524MB的数据到磁盘上。

4. 找出哪个文件正在被大量写入

lsof 命令可以展示一个进程打开的所有文件。从这个列表中,我们可以找到哪个文件被写入。

# lsof -p 16528

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

bonnie++ 16528 root cwd DIR 252,0 4096 130597 /tmp

<truncated>

bonnie++ 16528 root 8u REG 252,0 501219328 131869 /tmp/Bonnie.16528

bonnie++ 16528 root 9u REG 252,0 501219328 131869 /tmp/Bonnie.16528

bonnie++ 16528 root 10u REG 252,0 501219328 131869 /tmp/Bonnie.16528

bonnie++ 16528 root 11u REG 252,0 501219328 131869 /tmp/Bonnie.16528

bonnie++ 16528 root 12u REG 252,0 501219328 131869 <strong>/tmp/Bonnie.16528</strong>

# df /tmp

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/mapper/workstation-root 7667140 2628608 4653920 37% /

# pvdisplay

  --- Physical volume ---

  PV Name /dev/sda5

  VG Name workstation

  PV Size 7.76 GiB / not usable 2.00 MiB

  Allocatable yes

  PE Size 4.00 MiB

  Total PE 1986

  Free PE 8

  Allocated PE 1978

  PV UUID CLbABb-GcLB-l5z3-TCj3-IOK3-SQ2p-RDPW5S

使用pvdisplay可以看到,pv设备就是/dev/sda5,正是我们前面找到的sda。

参考文档:http://bencane.com/2012/08/06/troubleshooting-high-io-wait-in-linux/


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/7396844.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-05
下一篇 2023-04-05

发表评论

登录后才能评论

评论列表(0条)

保存