Linux网络 - 数据包在内核中接收和发送的过程(转)

Linux网络 - 数据包在内核中接收和发送的过程(转),第1张

本文将介绍在Linux系统中, 数据包是如何一步一步从网卡传到进程手中的 以及 数据包是如何一步一步从应用程序到网卡并最终发送出去的

如果英文没有问题,强烈建议阅读后面参考里的文章,里面介绍的更详细。

本文只讨论以太网的物理网卡,不涉及虚拟设备,并且以一个UDP包的接收过程作为示例.

网卡需要有驱动才能工作,驱动是加载到内核中的模块,负责衔接网卡和内核的网络模块,驱动在加载的时候将自己注册进网络模块,当相应的网卡收到数据包时,网络模块会调用相应的驱动程序处理数据。

下图展示了数据包(packet)如何进入内存,并被内核的网络模块开始处理:

软中断会触发内核网络模块中的软中断处理函数,后续流程如下

由于是UDP包,所以第一步会进入IP层,然后一级一级的函数往下调:

应用层一般有两种方式接收数据,一种是recvfrom函数阻塞在那里等着数据来,这种情况下当socket收到通知后,recvfrom就会被唤醒,然后读取接收队列的数据;另一种是通过epoll或者select监听相应的socket,当收到通知后,再调用recvfrom函数去读取接收队列的数据。两种情况都能正常的接收到相应的数据包。

了解数据包的接收流程有助于帮助我们搞清楚我们可以在哪些地方监控和修改数据包,哪些情况下数据包可能被丢弃,为我们处理网络问题提供了一些参考,同时了解netfilter中相应钩子的位置,对于了解iptables的用法有一定的帮助,同时也会帮助我们后续更好的理解Linux下的网络虚拟设备。

ndo_start_xmit会绑定到具体网卡驱动的相应函数,到这步之后,就归网卡驱动管了,不同的网卡驱动有不同的处理方式,这里不做详细介绍,其大概流程如下:

在网卡驱动发送数据包过程中,会有一些地方需要和netdevice子系统打交道,比如网卡的队列满了,需要告诉上层不要再发了,等队列有空闲的时候,再通知上层接着发数据。

前三个和最后一个是两个类型。前三个主要是Linux用来创建新的进程(线程)而设计的,exec()系列函数则是用来用指定的程序替换当前进程的所有内容。所以exec()系列函数经常在前三个函数使用之后调用,来创建一个全新的程序运行环境。Linux用init进程启动其他进程的过程一般都是这样的。

下面说fork、vfork和clone三个函数。这三个函数分别调用了sys_fork、sys_vfork、sys_clone,最终都调用了do_fork函数,差别在于参数的传递和一些基本的准备工作不同。可见这三者最终达到的最本质的目的都是创建一个新的进程。在这里需要明确一下,Linux内核中没有独立的“线程”结构,Linux的线程就是轻量级进程,换言之基本控制结构和Linux的进程是一样的(都是通过struct task_struct管理)。

fork是最简单的调用,不需要任何参数,仅仅是在创建一个子进程并为其创建一个独立于父进程的空间。fork使用COW(写时拷贝)机制,并且COW了父进程的栈空间。

vfork是一个过时的应用,vfork也是创建一个子进程,但是子进程共享父进程的空间。在vfork创建子进程之后,父进程阻塞,直到子进程执行了exec()或者exit()。vfork最初是因为fork没有实现COW机制,而很多情况下fork之后会紧接着exec,而exec的执行相当于之前fork复制的空间全部变成了无用功,所以设计了vfork。而现在fork使用了COW机制,唯一的代价仅仅是复制父进程页表的代价,所以vfork不应该出现在新的代码之中。在Linux的manpage中队vfork有这样一段话:It is rather unfortunate that Linux revived this specter from the past. The BSD man page states: "This system call will be eliminated when proper system sharing mechanisms are implemented. Users should not depend on the memory sharing semantics of vfork() as it will, in that case, be made synonymous to fork(2)."

clone是Linux为创建线程设计的(虽然也可以用clone创建进程)。所以可以说clone是fork的升级版本,不仅可以创建进程或者线程,还可以指定创建新的命名空间(namespace)、有选择的继承父进程的内存、甚至可以将创建出来的进程变成父进程的兄弟进程等等。clone和fork的调用方式也很不相同,clone调用需要传入一个函数,该函数在子进程中执行。此外,clone和fork最大不同在于clone不再复制父进程的栈空间,而是自己创建一个新的。

关于Linux命令的介绍,看看《linux就该这么学》,具体关于这一章地址3w(dot)linuxprobe/chapter-02(dot)html

Linux内核中的RCU机制

RCU的设计思想比较明确,通过新老指针替换的方式来实现免锁方式的共享保护。但是具体到代码的层面,理解起来多少还是会有些困难。下面我准备了关于Linux内核中的RCU机制的文章,提供给大家参考!

RCU读取侧进入临界区的标志是调用rcu_read_lock,这个函数的代码是:

static inline void rcu_read_lock(void)

{

__rcu_read_lock()

__acquire(RCU)

rcu_read_acquire()

}

该实现里面貌似有三个函数调用,但实质性的工作由第一个函数__rcu_read_lock()来完成,__rcu_read_lock()通过调用 preempt_disable()关闭内核可抢占性。但是中断是允许的,假设读取者正处于rcu临界区中且刚读取了一个共享数据区的指针p(但是还没有访问p中的数据成员),发生了一个中断,而该中断处理例程ISR恰好需要修改p所指向的数据区,按照RCU的设计原则,ISR会新分配一个同样大小的数据区new_p,再把老数据区p中的数据拷贝到新数据区,接着是在new_p的基础上做数据修改的工作(因为是在new_p空间中修改,所以不存在对p的并发访问,因此说RCU是一种免锁机制,原因就在这里),ISR在把数据更新的工作完成后,将new_p赋值给p(p=new_p),最后它会再注册一个回调函数用以在适当的时候释放老指针p。因此,只要对老指针p上的所有引用都结束了,释放p就不会有问题。当中断处理例程做完这些工作返回后,被中断的进程将依然访问到p空间上的数据,也就是老数据,这样的结果是RCU机制所允许的。RCU规则对读取者与写入者之间因指针切换所造成的短暂的资源视图不一致问题是允许的。

接下来关于RCU一个有趣的问题是:何时才能释放老指针。我见过很多书中对此的'回答是:当系统中所有处理器上都发生了一次进程切换。这种程式化的回答常常让刚接触RCU机制的读者感到一头雾水,为什么非要等所有处理器上都发生一次进程切换才可以调用回调函数释放老指针呢?这其实是RCU的设计规则决定的: 所有对老指针的引用只可能发生在rcu_read_lock与rcu_read_unlock所包括的临界区中,而在这个临界区中不可能发生进程切换,而一旦出了该临界区就不应该再有任何形式的对老指针p的引用。很明显,这个规则要求读取者在临界区中不能发生进程切换,因为一旦有进程切换,释放老指针的回调函数就有可能被调用,从而导致老指针被释放掉,当被切换掉的进程被重新调度运行时它就有可能引用到一个被释放掉的内存空间。

现在我们看到为什么rcu_read_lock只需要关闭内核可抢占性就可以了,因为它使得即便在临界区中发生了中断,当前进程也不可能被切换除去。 内核开发者,确切地说,RCU的设计者所能做的只能到这个程度。接下来就是使用者的责任了,如果在rcu的临界区中调用了一个函数,该函数可能睡眠,那么RCU的设计规则就遭到了破坏,系统将进入一种不稳定的状态。

这再次说明,如果想使用一个东西,一定要搞清楚其内在的机制,象上面刚提到的那个例子,即便现在程序不出现问题,但是系统中留下的隐患如同一个定时炸d, 随时可能被引爆,尤其是过了很长时间问题才突然爆发出来。绝大多数情形下,找到问题所花费的时间可能要远远大于静下心来仔细搞懂RCU的原理要多得多。

RCU中的读取者相对rwlock的读取者而言,自由度更高。因为RCU的读取者在访问一个共享资源时,不需要考虑写入者的感受,这不同于rwlock的写入者,rwlock reader在读取共享资源时需要确保没有写入者在 *** 作该资源。两者之间的差异化源自RCU对共享资源在读取者与写入者之间进行了分离,而rwlock的 读取者和写入者则至始至终只使用共享资源的一份拷贝。这也意味着RCU中的写入者要承担更多的责任,而且对同一共享资源进行更新的多个写入者之间必须引入某种互斥机制,所以RCU属于一种"免锁机制"的说法仅限于读取者与写入者之间。所以我们看到:RCU机制应该用在有大量的读取 *** 作,而更新 *** 作相对较少的情形下。此时RCU可以大大提升系统系能,因为RCU的读取 *** 作相对其他一些有锁机制而言,在锁上的开销几乎没有。

实际使用中,共享的资源常常以链表的形式存在,内核为RCU模式下的链表 *** 作实现了几个接口函数,读取者和使用者应该使用这些内核函数,比如 list_add_tail_rcu, list_add_rcu,hlist_replace_rcu等等,具体的使用可以参考某些内核编程或者设备驱动程序方面的资料。

在释放老指针方面,Linux内核提供两种方法供使用者使用,一个是调用call_rcu,另一个是调用synchronize_rcu。前者是一种异步 方式,call_rcu会将释放老指针的回调函数放入一个结点中,然后将该结点加入到当前正在运行call_rcu的处理器的本地链表中,在时钟中断的 softirq部分(RCU_SOFTIRQ), rcu软中断处理函数rcu_process_callbacks会检查当前处理器是否经历了一个休眠期(quiescent,此处涉及内核进程调度等方面的内容),rcu的内核代码实现在确定系统中所有的处理器都经历过了一个休眠期之后(意味着所有处理器上都发生了一次进程切换,因此老指针此时可以被安全释放掉了),将调用call_rcu提供的回调函数。

synchronize_rcu的实现则利用了等待队列,在它的实现过程中也会向call_rcu那样向当前处理器的本地链表中加入一个结点,与 call_rcu不同之处在于该结点中的回调函数是wakeme_after_rcu,然后synchronize_rcu将在一个等待队列中睡眠,直到系统中所有处理器都发生了一次进程切换,因而wakeme_after_rcu被rcu_process_callbacks所调用以唤醒睡眠的 synchronize_rcu,被唤醒之后,synchronize_rcu知道它现在可以释放老指针了。

所以我们看到,call_rcu返回后其注册的回调函数可能还没被调用,因而也就意味着老指针还未被释放,而synchronize_rcu返回后老指针肯定被释放了。所以,是调用call_rcu还是synchronize_rcu,要视特定需求与当前上下文而定,比如中断处理的上下文肯定不能使用 synchronize_rcu函数了。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/7668419.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-08
下一篇 2023-04-08

发表评论

登录后才能评论

评论列表(0条)

保存