Linux C++多线程同步的四种方式

Linux C++多线程同步的四种方式,第1张

From : https://blog.csdn.net/qq_39382769/article/details/960753461.同一个线程内部,指令按照先后顺序执行;但不同线程之间的指令很难说清楚是哪一个先执行,在并发情况下,指令执行的先后顺序由内核决定。 如果运行的结果依赖于不同线程执行的先后的话,那么就会形成竞争条件,在这样的情况下,计算的结果很难预知,所以应该尽量避免竞争条件的形成。 2.最常见的解决竞争条件的方法是:将原先分离的两个指令构成一个不可分割的原子 *** 作,而其他任务不能插入到原子 *** 作中! 3.对多线程来说,同步指的是在一定时间内只允许某一个线程访问某个资源,而在此时间内,不允许其他线程访问该资源! 互斥锁 条件变量 读写锁 信号量 一种特殊的全局变量,拥有lock和unlock两种状态。 unlock的互斥锁可以由某个线程获得,一旦获得,这个互斥锁会锁上变成lock状态,此后只有该线程由权力打开该锁,其他线程想要获得互斥锁,必须得到互斥锁再次被打开之后。 1.互斥锁的初始化, 分为静态初始化和动态初始化. 2.互斥锁的相关属性及分类 (1) attr表示互斥锁的属性 (2) pshared表示互斥锁的共享属性,由两种取值: 1)PTHREAD_PROCESS_PRIVATE:锁只能用于一个进程内部的两个线程进行互斥(默认情况) 2)PTHREAD_PROCESS_SHARED:锁可用于两个不同进程中的线程进行互斥,使用时还需要在进程共享内存中分配互斥锁,然后为该互斥锁指定属性就可以了。 互斥锁存在缺点: (1)某个线程正在等待共享数据内某个条件出现。 (2)重复对数据对象加锁和解锁(轮询),但是这样轮询非常耗费时间和资源,而且效率非常低,所以互斥锁不太适合这种情况。 当线程在等待满足某些条件时,使线程进入睡眠状态;一旦条件满足,就换线因等待满足特定条件而睡眠的线程。 程序的效率无疑会大大提高。 1)创建 静态方式:pthread_cond_t cond PTHREAD_COND_INITIALIZER 动态方式:int pthread_cond_init(&cond,NULL) Linux thread 实现的条件变量不支持属性,所以NULL(cond_attr参数) 2)注销 int pthread_cond_destory(&cond) 只有没有线程在该条件变量上,该条件变量才能注销,否则返回EBUSY 因为Linux实现的条件变量没有分配什么资源,所以注销动作只包括检查是否有等待线程!(请参考条件变量的底层实现) 3)等待 条件等待:int pthread_cond_wait(&cond,&mutex) 计时等待:int pthread_cond_timewait(&cond,&mutex,time) 1.其中计时等待如果在给定时刻前条件没有被满足,则返回ETIMEOUT,结束等待 2.无论那种等待方式,都必须有一个互斥锁配合,以防止多个线程同时请求pthread_cond_wait形成竞争条件! 3.在调用pthread_cond_wait前必须由本线程加锁 4)激发 激发一个等待线程:pthread_cond_signal(&cond) 激发所有等待线程:pthread_cond_broadcast(&cond) 重要的是,pthread_cond_signal不会存在惊群效应,也就是是它最多给一个等待线程发信号,不会给所有线程发信号唤醒,然后要求他们自己去争抢资源! pthread_cond_broadcast() 唤醒所有正在pthread_cond_wait()的同一个条件变量的线程。注意:如果等待的多个现场不使用同一个锁,被唤醒的多个线程执行是并发的。pthread_cond_broadcast &pthread_cond_signal1.读写锁比互斥锁更加具有适用性和并行性 2.读写锁最适用于对数据结构的读 *** 作读 *** 作次数多余写 *** 作次数的场合! 3.锁处于读模式时可以线程共享,而锁处于写模式时只能独占,所以读写锁又叫做共享-独占锁。 4.读写锁有两种策略:强读同步和强写同步 强读同步: 总是给读者更高的优先权,只要写者没有进行写 *** 作,读者就可以获得访问权限 强写同步: 总是给写者更高的优先权,读者只能等到所有正在等待或者执行的写者完成后才能进行读 1)初始化的销毁读写锁 静态初始化:pthread_rwlock_t rwlock=PTHREAD_RWLOCK_INITIALIZER 动态初始化:int pthread_rwlock_init(rwlock,NULL),NULL代表读写锁采用默认属性 销毁读写锁:int pthread_rwlock_destory(rwlock) 在释放某个读写锁的资源之前,需要先通过pthread_rwlock_destory函数对读写锁进行清理。释放由pthread_rwlock_init函数分配的资源 如果你想要读写锁使用非默认属性,则attr不能为NULL,得给attr赋值 int pthread_rwlockattr_init(attr),给attr初始化 int pthread_rwlockattr_destory(attr),销毁attr 2)以写的方式获取锁,以读的方式获取锁,释放读写锁 int pthread_rwlock_rdlock(rwlock),以读的方式获取锁 int pthread_rwlock_wrlock(rwlock),以写的方式获取锁 int pthread_rwlock_unlock(rwlock),释放锁 上面两个获取锁的方式都是阻塞的函数,也就是说获取不到锁的话,调用线程不是立即返回,而是阻塞执行,在需要进行写 *** 作的时候,这种阻塞式获取锁的方式是非常不好的,你想一下,我需要进行写 *** 作,不但没有获取到锁,我还一直在这里等待,大大拖累效率 所以我们应该采用非阻塞的方式获取锁: int pthread_rwlock_tryrdlock(rwlock) int pthread_rwlock_trywrlock(rwlock) 互斥锁只允许一个线程进入临界区,而信号量允许多个线程进入临界区。 1)信号量初始化 int sem_init(&sem,pshared, v) pshared为0,表示这个信号量是当前进程的局部信号量。 pshared为1,表示这个信号量可以在多个进程之间共享。 v为信号量的初始值。 返回值: 成功:0,失败:-1 2)信号量值的加减 int sem_wait(&sem):以原子 *** 作的方式将信号量的值减去1 int sem_post(&sem):以原子 *** 作的方式将信号量的值加上1 3)对信号量进行清理 int sem_destory(&sem)

线程同步的方式包括:互斥锁、读写锁、条件变量、信号量和令牌。

以Java语言为例:

用synchronized关键字修饰同步方法。

同步有几种实现方法分别是synchronized,wait与notify

wait():使一个线程处于等待状态,并且释放所持有的对象的lock。

sleep():使一个正在运行的线程处于睡眠状态,是一个静态方法,调用此方法要捕捉InterruptedException异常。

notify():唤醒一个处于等待状态的线程,注意的是在调用此方法的时候,并不能确切的唤醒某一个等待状态的线程,而是由JVM确定唤醒哪个线程,而且不是按优先级。

Allnotity():唤醒所有处入等待状态的线程,注意并不是给所有唤醒线程一个对象的锁,而是让它们竞争。

同步是多线程中的重要概念。同步的使用可以保证在多线程运行的环境中,程序不会产生设计之外的错误结果。同步的实现方式有两种,同步方法和同步块,这两种方式都要用到synchronized关键字。

给一个方法增加synchronized修饰符之后就可以使它成为同步方法,这个方法可以是静态方法和非静态方法,但是不能是抽象类的抽象方法,也不能是接口中的接口方法。下面代码是一个同步方法的示例:

public synchronized void aMethod() {

// do something

}

public static synchronized void anotherMethod() {

// do something

}

线程在执行同步方法时是具有排它性的。当任意一个线程进入到一个对象的任意一个同步方法时,这个对象的所有同步方法都被锁定了,在此期间,其他任何线程都不能访问这个对象的任意一个同步方法,直到这个线程执行完它所调用的同步方法并从中退出,从而导致它释放了该对象的同步锁之后。在一个对象被某个线程锁定之后,其他线程是可以访问这个对象的所有非同步方法的。

同步块是通过锁定一个指定的对象,来对同步块中包含的代码进行同步;而同步方法是对这个方法块里的代码进行同步,而这种情况下锁定的对象就是同步方法所属的主体对象自身。如果这个方法是静态同步方法呢?那么线程锁定的就不是这个类的对象了,也不是这个类自身,而是这个类对应的java.lang.Class类型的对象。同步方法和同步块之间的相互制约只限于同一个对象之间,所以静态同步方法只受它所属类的其它静态同步方法的制约,而跟这个类的实例(对象)没有关系。

LinuxThread的线程机制

LinuxThreads是目前Linux平台上使用最为广泛的线程库,由Xavier Leroy ([email protected]) 负责开发完成,并已绑定在GLIBC中发行。它所实现的就是基于核心轻量级进程的"一对一"线程模型,一个线程实体对应一个核心轻量级进程,而线程之间的 管理在核外函数库中实现。

1.线程描述数据结构及实现限制

LinuxThreads定义了一个struct _pthread_descr_struct数据结构来描述线程,并使用全局数组变量 __pthread_handles来描述和引用进程所辖线程。在__pthread_handles中的前两项,LinuxThreads定义了两个全 局的系统线程:__pthread_initial_thread和__pthread_manager_thread,并用 __pthread_main_thread表征__pthread_manager_thread的父线程(初始为 __pthread_initial_thread)。

struct _pthread_descr_struct是一个双环链表结构,__pthread_manager_thread所在的链表仅包括它 一个元素,实际上,__pthread_manager_thread是一个特殊线程,LinuxThreads仅使用了其中的errno、p_pid、 p_priority等三个域。而__pthread_main_thread所在的链则将进程中所有用户线程串在了一起。经过一系列 pthread_create()之后形成的__pthread_handles数组将如下图所示:

图2 __pthread_handles数组结构

新创建的线程将首先在__pthread_handles数组中占据一项,然后通过数据结构中的链指针连入以__pthread_main_thread为首指针的链表中。这个链表的使用在介绍线程的创建和释放的时候将提到。

LinuxThreads遵循POSIX1003.1c标准,其中对线程库的实现进行了一些范围限制,比如进程最大线程数,线程私有数据区大小等等。在 LinuxThreads的实现中,基本遵循这些限制,但也进行了一定的改动,改动的趋势是放松或者说扩大这些限制,使编程更加方便。这些限定宏主要集中 在sysdeps/unix/sysv/linux/bits/local_lim.h(不同平台使用的文件位置不同)中,包括如下几个:

每进程的私有数据key数,POSIX定义_POSIX_THREAD_KEYS_MAX为128,LinuxThreads使用 PTHREAD_KEYS_MAX,1024;私有数据释放时允许执行的 *** 作数,LinuxThreads与POSIX一致,定义 PTHREAD_DESTRUCTOR_ITERATIONS为4;每进程的线程数,POSIX定义为64,LinuxThreads增大到1024 (PTHREAD_THREADS_MAX);线程运行栈最小空间大小,POSIX未指定,LinuxThreads使用 PTHREAD_STACK_MIN,16384(字节)。

2.管理线程

"一对一"模型的好处之一是线程的调度由核心完成了,而其他诸如线程取消、线程间的同步等工作,都是在核外线程库中完成的。在LinuxThreads 中,专门为每一个进程构造了一个管理线程,负责处理线程相关的管理工作。当进程第一次调用pthread_create()创建一个线程的时候就会创建 (__clone())并启动管理线程。

在一个进程空间内,管理线程与其他线程之间通过一对"管理管道(manager_pipe[2])"来通讯,该管道在创建管理线程之前创建,在成功启动 了管理线程之后,管理管道的读端和写端分别赋给两个全局变量__pthread_manager_reader和 __pthread_manager_request,之后,每个用户线程都通过__pthread_manager_request向管理线程发请求, 但管理线程本身并没有直接使用__pthread_manager_reader,管道的读端(manager_pipe[0])是作为__clone ()的参数之一传给管理线程的,管理线程的工作主要就是监听管道读端,并对从中取出的请求作出反应。

创建管理线程的流程如下所示:

(全局变量pthread_manager_request初值为-1)

图3 创建管理线程的流程

初始化结束后,在__pthread_manager_thread中记录了轻量级进程号以及核外分配和管理的线程id, 2*PTHREAD_THREADS_MAX+1这个数值不会与任何常规用户线程id冲突。管理线程作为pthread_create()的调用者线程的 子线程运行,而pthread_create()所创建的那个用户线程则是由管理线程来调用clone()创建,因此实际上是管理线程的子线程。(此处子 线程的概念应该当作子进程来理解。)

__pthread_manager()就是管理线程的主循环所在,在进行一系列初始化工作后,进入while(1)循环。在循环中,线程以2秒为 timeout查询(__poll())管理管道的读端。在处理请求前,检查其父线程(也就是创建manager的主线程)是否已退出,如果已退出就退出 整个进程。如果有退出的子线程需要清理,则调用pthread_reap_children()清理。

然后才是读取管道中的请求,根据请求类型执行相应 *** 作(switch-case)。具体的请求处理,源码中比较清楚,这里就不赘述了。

3.线程栈

在LinuxThreads中,管理线程的栈和用户线程的栈是分离的,管理线程在进程堆中通过malloc()分配一个THREAD_MANAGER_STACK_SIZE字节的区域作为自己的运行栈。

用户线程的栈分配办法随着体系结构的不同而不同,主要根据两个宏定义来区分,一个是NEED_SEPARATE_REGISTER_STACK,这个属 性仅在IA64平台上使用;另一个是FLOATING_STACK宏,在i386等少数平台上使用,此时用户线程栈由系统决定具体位置并提供保护。与此同 时,用户还可以通过线程属性结构来指定使用用户自定义的栈。因篇幅所限,这里只能分析i386平台所使用的两种栈组织方式:FLOATING_STACK 方式和用户自定义方式。

在FLOATING_STACK方式下,LinuxThreads利用mmap()从内核空间中分配8MB空间(i386系统缺省的最大栈空间大小,如 果有运行限制(rlimit),则按照运行限制设置),使用mprotect()设置其中第一页为非访问区。该8M空间的功能分配如下图:

图4 栈结构示意

低地址被保护的页面用来监测栈溢出。

对于用户指定的栈,在按照指针对界后,设置线程栈顶,并计算出栈底,不做保护,正确性由用户自己保证。

不论哪种组织方式,线程描述结构总是位于栈顶紧邻堆栈的位置。

4.线程id和进程id

每个LinuxThreads线程都同时具有线程id和进程id,其中进程id就是内核所维护的进程号,而线程id则由LinuxThreads分配和维护。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/7729976.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-09
下一篇 2023-04-09

发表评论

登录后才能评论

评论列表(0条)

保存