求高手帮忙翻译一段基于OPENCV的运动目标检测的程序,详细翻译,老师会提问

求高手帮忙翻译一段基于OPENCV的运动目标检测的程序,详细翻译,老师会提问,第1张

这种运动目标检测的方法还是很经典的,下面写了一些注释仅作参考,希望对你有所帮助。

#include "stdafx.h"

#include "cv.h"

#include "highgui.h"

#include <time.h>

#include <math.h>

#include <ctype.h>

#include <stdio.h>

#include <string.h>

const double MHI_DURATION = 0.1//定义运动跟踪的最大时间

const double MAX_TIME_DELTA = 0.5

const double MIN_TIME_DELTA = 0.05

const int N = 3//定义数组的维度为3

const int CONTOUR_MAX_AERA = 10//定义的阈值

IplImage **buf = 0

int last = 0

IplImage *mhi = 0

CvFilter filter = CV_GAUSSIAN_5x5//高斯卷积滤波

CvConnectedComp *cur_comp, min_comp//定义连通域 *** 作的存储

CvConnectedComp comp//定义连通域 *** 作的存储

CvMemStorage *storage//定义内存分配

CvPoint pt[4]//定义点的存储

/*****************************

*下面update_mhi函数输入img,输出识别结果dst,阈值diff_threshold

*/

void update_mhi( IplImage* img, IplImage* dst, int diff_threshold )

{

double timestamp = clock()/1.//返回从“开启这个程序进程”到“程序中调用clock()函数”时之间的CPU时钟计时单元

CvSize size = cvSize(img->width,img->height)//获取图像的宽和高

int i, idx1, idx2

IplImage* silh

IplImage* pyr = cvCreateImage( cvSize((size.width &-2)/2, (size.height &-2)/2), 8, 1 )//

CvMemStorage *stor//申请内存

CvSeq *cont//定义保存数据的结构

/*先进行数据的初始化*/

if( !mhi || mhi->width != size.width || mhi->height != size.height )

{

//分配内存 *** 作:如果buf是空值,则分配存储空间

if( buf == 0 )

{

buf = (IplImage**)malloc(N*sizeof(buf[0]))//利用malloc动态分配内存

memset( buf, 0, N*sizeof(buf[0]))//作用是在一段内存块中填充某个给定的值,此处值为0

}

//创建通道为N=3,大小为size的图像存储

for( i = 0i <Ni++ )

{

cvReleaseImage( &buf[i] )//释放buf

buf[i] = cvCreateImage( size, IPL_DEPTH_8U, 1 )//创建buf[i]

cvZero( buf[i] )//初始化为0

}

cvReleaseImage( &mhi )//释放变量mhi

mhi = cvCreateImage( size, IPL_DEPTH_32F, 1 )//创建mhi,大小为size,深度为IPL_DEPTH_32F,1个通道

cvZero( mhi )///初始化为0

}

cvCvtColor( img, buf[last], CV_BGR2GRAY )//将RGB图像img转换成gray灰度图像buf

idx1 = last//将last赋值到idx1

idx2 = (last + 1) % N//计算(last + 1)除以N的余数

last = idx2//将idx2赋值到last

silh = buf[idx2]//将buf[idx2]赋值到silh

//下面计算buf[idx1]与buf[idx2]差的绝对值,输出结果存入silh

cvAbsDiff( buf[idx1], buf[idx2], silh )

//下面对单通道数组silh应用固定阈值 *** 作,阈值为30,阈值化类型为CV_THRESH_BINARY最大值为255

cvThreshold( silh, silh, 30, 255, CV_THRESH_BINARY )

//去掉影像(silh) 以更新运动历史图像为mhi,当前时间为timestamp,运动跟踪的最大时间为MHI_DURATION=0.1

cvUpdateMotionHistory( silh, mhi, timestamp, MHI_DURATION )

//下面对mhi进行线性变换 *** 作,输出结果存入dst:dst(I)=mhi(I)*第二个参数 + 第三个参数

cvCvtScale( mhi, dst, 255./MHI_DURATION,

(MHI_DURATION - timestamp)*255./MHI_DURATION )

cvCvtScale( mhi, dst, 255./MHI_DURATION, 0 )

cvSmooth( dst, dst, CV_MEDIAN, 3, 0, 0, 0 )//对dst进行中值滤波

cvPyrDown( dst, pyr, 7 )//利用卷积滤波器对dst进行下采样

cvDilate( pyr, pyr, 0, 1 )//对图像pyr使用3*3长方形进行膨胀 *** 作

cvPyrUp( pyr, dst, 7 )//利用卷积滤波器对dst进行上采样

stor = cvCreateMemStorage(0)//动态内存存储创建内存块

cont = cvCreateSeq(CV_SEQ_ELTYPE_POINT, sizeof(CvSeq), sizeof(CvPoint) , stor)//创建存储结构

//函数cvFindContours为寻找图像dst的角点,数据存入cont中,其中包含角点的坐标值

cvFindContours( dst, stor, &cont, sizeof(CvContour),

CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE, cvPoint(0,0))

for(contcont = cont->h_next)

{

CvRect r = ((CvContour*)cont)->rect//创建矩形区域

if(r.height * r.width >CONTOUR_MAX_AERA)

{

//下面是在图像Img上绘制红色的矩形框,利用左上点和右下点

cvRectangle( img, cvPoint(r.x,r.y),

cvPoint(r.x + r.width, r.y + r.height),

CV_RGB(255,0,0), 1, CV_AA,0)

}

}

cvReleaseMemStorage(&stor)//释放内存

cvReleaseImage( &pyr )//释放结构体

}

int _tmain(int argc, _TCHAR* argv[])

{

IplImage* motion = 0

CvCapture* capture = 0

capture = cvCaptureFromFile("D://Capture1.avi")//获取视频文件

if( capture )

cvNamedWindow( "视频分析", 1 )//创建窗口

{

for()

{

IplImage* image

if( !cvGrabFrame( capture ))//如果读取视频失败,则退出

break

image = cvRetrieveFrame( capture )//获取图像

if( image )

{

if( !motion )

{

motion = cvCreateImage( cvSize(image->width,image->height), 8, 1 )

cvZero( motion )

motion->origin = image->origin

}

}

update_mhi( image, motion, 60)//运动目标检测,阈值为60

cvShowImage( "视频分析", image )//在窗口中显示图像

if( cvWaitKey(10) >= 0 )

break

}

cvReleaseCapture( &capture )//释放

cvDestroyWindow( "视频分析" )//释放窗口

}

return 0

}

functionvu=get_mask()//定义函数VUbg=imread('tu\\131.jpg')//读入图片131.jpgbg=rgb2gray(bg)//将图片转换为灰度图像bg=im2bw(bg,graythresh(bg))//再转换为二值图,阈值是对灰度图像用最大类间方差法得到的Img=imread('tu\\1.jpg')//读入图片1.JPGI=rgb2gray(Img)//转换为灰度图I=im2bw(I,graythresh(I))//转换为二值图bw=I//L=bwlabel(I)//从黑背景甄别白块,返回和I相同大小的图像Lstats=regionprops(L,'Area')//统计被标记白块的区域的总面积Ar=cat(1,stats.Area)//按列连接矩阵[mr,ind]=max(Ar)//找到Ar中那些最大值的索引位置,将他们放在向量ind中I(L~=ind)=0//I中L与ind不相等的位置赋值为零vu=imfill(I,'holes')//将原图填充孔洞

DPCA,英文全称 Displaced Phase Center Antenna,即偏移相位中心天线[1] 。

在机载多通道地面运动目标检测(GMTI)雷达系统中,载机运动导致地杂波谱展宽,慢速运动目标淹没在强地杂波中,因此,只有抑制地杂波才能有效的检测慢速运动目标。

DPCA技术是解决由平台运动导致杂波谱展宽的一种技术。通过最小化杂波谱宽度,DPCA可以提高慢速运动目标的检测概率。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/7739327.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-09
下一篇 2023-04-09

发表评论

登录后才能评论

评论列表(0条)

保存