单纯形法matlab程序例题属于哪一类

单纯形法matlab程序例题属于哪一类,第1张

是综合类。

因为单纯形matlab是综合类的工程数学软件,利用其语言和自带命令可以方便地编写处理各种问题的程序包,自带的工具箱涵盖的范围也很丰富。

程序(Program)是计算机系统的必备元素,因为计算机系统由硬件、 *** 作系统以及软件构成,而程序又是软件的组成部分。

matlab自己就有啊!它是Nelder-Mead法或称下山单纯形法,由Nelder和Mead发现(1965年)

http://zhidao.baidu.com/question/18274859.html

>>type fminsearch

function [x,fval,exitflag,output] = fminsearch(funfcn,x,options,varargin)

%FMINSEARCH Multidimensional unconstrained nonlinear minimization (Nelder-Mead).

% X = FMINSEARCH(FUN,X0) starts at X0 and attempts to find a local minimizer

% X of the function FUN. FUN is a function handle. FUN accepts input X and

% returns a scalar function value F evaluated at X. X0 can be a scalar, vector

% or matrix.

%

% X = FMINSEARCH(FUN,X0,OPTIONS) minimizes with the default optimization

% parameters replaced by values in the structure OPTIONS, created

% with the OPTIMSET function. See OPTIMSET for details. FMINSEARCH uses

% these options: Display, TolX, TolFun, MaxFunEvals, MaxIter, FunValCheck,

% PlotFcns, and OutputFcn.

%

% X = FMINSEARCH(PROBLEM) finds the minimum for PROBLEM. PROBLEM is a

% structure with the function FUN in PROBLEM.objective, the start point

% in PROBLEM.x0, the options structure in PROBLEM.options, and solver

% name 'fminsearch' in PROBLEM.solver. The PROBLEM structure must have

% all the fields.

%

% [X,FVAL]= FMINSEARCH(...) returns the value of the objective function,

% described in FUN, at X.

%

% [X,FVAL,EXITFLAG] = FMINSEARCH(...) returns an EXITFLAG that describes

% the exit condition of FMINSEARCH. Possible values of EXITFLAG and the

% corresponding exit conditions are

%

%1 Maximum coordinate difference between current best point and other

% points in simplex is less than or equal to TolX, and corresponding

% difference in function values is less than or equal to TolFun.

%0 Maximum number of function evaluations or iterations reached.

% -1 Algorithm terminated by the output function.

%

% [X,FVAL,EXITFLAG,OUTPUT] = FMINSEARCH(...) returns a structure

% OUTPUT with the number of iterations taken in OUTPUT.iterations, the

% number of function evaluations in OUTPUT.funcCount, the algorithm name

% in OUTPUT.algorithm, and the exit message in OUTPUT.message.

%

% Examples

% FUN can be specified using @:

%X = fminsearch(@sin,3)

% finds a minimum of the SIN function near 3.

% In this case, SIN is a function that returns a scalar function value

% SIN evaluated at X.

%

% FUN can also be an anonymous function:

%X = fminsearch(@(x) norm(x),[123])

% returns a point near the minimizer [000].

%

% If FUN is parameterized, you can use anonymous functions to capture the

% problem-dependent parameters. Suppose you want to optimize the objective

% given in the function myfun, which is parameterized by its second argument c.

% Here myfun is an M-file function such as

%

% function f = myfun(x,c)

% f = x(1)^2 + c*x(2)^2

%

% To optimize for a specific value of c, first assign the value to c. Then

% create a one-argument anonymous function that captures that value of c

% and calls myfun with two arguments. Finally, pass this anonymous function

% to FMINSEARCH:

%

% c = 1.5% define parameter first

% x = fminsearch(@(x) myfun(x,c),[0.31])

%

% FMINSEARCH uses the Nelder-Mead simplex (direct search) method.

%

% See also OPTIMSET, FMINBND, FUNCTION_HANDLE.

% Reference: Jeffrey C. Lagarias, James A. Reeds, Margaret H. Wright,

% Paul E. Wright, "Convergence Properties of the Nelder-Mead Simplex

% Method in Low Dimensions", SIAM Journal of Optimization, 9(1):

% p.112-147, 1998.

% Copyright 1984-2006 The MathWorks, Inc.

% $Revision: 1.21.4.12.2.1 $ $Date: 2006/07/16 15:34:18 $

defaultopt = struct('Display','notify','MaxIter','200*numberOfVariables',...

'MaxFunEvals','200*numberOfVariables','TolX',1e-4,'TolFun',1e-4, ...

'FunValCheck','off','OutputFcn',[],'PlotFcns',[])

% If just 'defaults' passed in, return the default options in X

if nargin==1 &&nargout <= 1 &&isequal(funfcn,'defaults')

x = defaultopt

return

end

if nargin<3, options = []end

% Detect problem structure input

if nargin == 1

if isa(funfcn,'struct')

[funfcn,x,options] = separateOptimStruct(funfcn)

else % Single input and non-structure

error('MATLAB:fminsearch:InputArg','The input to FMINSEARCH should be either a structure with valid fields or consist of at least two arguments.')

end

end

if nargin == 0

error('MATLAB:fminsearch:NotEnoughInputs',...

'FMINSEARCH requires at least two input arguments')

end

% Check for non-double inputs

if ~isa(x,'double')

error('MATLAB:fminsearch:NonDoubleInput', ...

'FMINSEARCH only accepts inputs of data type double.')

end

n = numel(x)

numberOfVariables = n

printtype = optimget(options,'Display',defaultopt,'fast')

tolx = optimget(options,'TolX',defaultopt,'fast')

tolf = optimget(options,'TolFun',defaultopt,'fast')

maxfun = optimget(options,'MaxFunEvals',defaultopt,'fast')

maxiter = optimget(options,'MaxIter',defaultopt,'fast')

funValCheck = strcmp(optimget(options,'FunValCheck',defaultopt,'fast'),'on')

% In case the defaults were gathered from calling: optimset('fminsearch'):

if ischar(maxfun)

if isequal(lower(maxfun),'200*numberofvariables')

maxfun = 200*numberOfVariables

else

error('MATLAB:fminsearch:OptMaxFunEvalsNotInteger',...

'Option ''MaxFunEvals'' must be an integer value if not the default.')

end

end

if ischar(maxiter)

if isequal(lower(maxiter),'200*numberofvariables')

maxiter = 200*numberOfVariables

else

error('MATLAB:fminsearch:OptMaxIterNotInteger',...

'Option ''MaxIter'' must be an integer value if not the default.')

end

end

switch printtype

case 'notify'

prnt = 1

case {'none','off'}

prnt = 0

case 'iter'

prnt = 3

case 'final'

prnt = 2

case 'simplex'

prnt = 4

otherwise

prnt = 1

end

% Handle the output

outputfcn = optimget(options,'OutputFcn',defaultopt,'fast')

if isempty(outputfcn)

haveoutputfcn = false

else

haveoutputfcn = true

xOutputfcn = x% Last x passed to outputfcnhas the input x's shape

% Parse OutputFcn which is needed to support cell array syntax for OutputFcn.

outputfcn = createCellArrayOfFunctions(outputfcn,'OutputFcn')

end

% Handle the plot

plotfcns = optimget(options,'PlotFcns',defaultopt,'fast')

if isempty(plotfcns)

haveplotfcn = false

else

haveplotfcn = true

xOutputfcn = x% Last x passed to plotfcnshas the input x's shape

% Parse PlotFcns which is needed to support cell array syntax for PlotFcns.

plotfcns = createCellArrayOfFunctions(plotfcns,'PlotFcns')

end

header = ' Iteration Func-count min f(x) Procedure'

% Convert to function handle as needed.

funfcn = fcnchk(funfcn,length(varargin))

% Add a wrapper function to check for Inf/NaN/complex values

if funValCheck

% Add a wrapper function, CHECKFUN, to check for NaN/complex values without

% having to change the calls that look like this:

% f = funfcn(x,varargin{:})

% x is the first argument to CHECKFUN, then the user's function,

% then the elements of varargin. To accomplish this we need to add the

% user's function to the beginning of varargin, and change funfcn to be

% CHECKFUN.

varargin = {funfcn, varargin{:}}

funfcn = @checkfun

end

n = numel(x)

% Initialize parameters

rho = 1chi = 2psi = 0.5sigma = 0.5

onesn = ones(1,n)

two2np1 = 2:n+1

one2n = 1:n

% Set up a simplex near the initial guess.

xin = x(:)% Force xin to be a column vector

v = zeros(n,n+1)fv = zeros(1,n+1)

v(:,1) = xin % Place input guess in the simplex! (credit L.Pfeffer at Stanford)

x(:) = xin % Change x to the form expected by funfcn

fv(:,1) = funfcn(x,varargin{:})

func_evals = 1

itercount = 0

how = ''

% Initial simplex setup continues later

% Initialize the output and plot functions.

if haveoutputfcn || haveplotfcn

[xOutputfcn, optimValues, stop] = callOutputAndPlotFcns(outputfcn,plotfcns,v(:,1),xOutputfcn,'init',itercount, ...

func_evals, how, fv(:,1),varargin{:})

if stop

[x,fval,exitflag,output] = cleanUpInterrupt(xOutputfcn,optimValues)

if prnt >0

disp(output.message)

end

return

end

end

% Print out initial f(x) as 0th iteration

if prnt == 3

disp(' ')

disp(header)

disp(sprintf(' %5.0f%5.0f %12.6g %s', itercount, func_evals, fv(1), how))

elseif prnt == 4

clc

formatsave = get(0,{'format','formatspacing'})

format compact

format short e

disp(' ')

disp(how)

v

fv

func_evals

end

% OutputFcn and PlotFcns call

if haveoutputfcn || haveplotfcn

[xOutputfcn, optimValues, stop] = callOutputAndPlotFcns(outputfcn,plotfcns,v(:,1),xOutputfcn,'iter',itercount, ...

func_evals, how, fv(:,1),varargin{:})

if stop % Stop per user request.

[x,fval,exitflag,output] = cleanUpInterrupt(xOutputfcn,optimValues)

if prnt >0

disp(output.message)

end

return

end

end

% Continue setting up the initial simplex.

% Following improvement suggested by L.Pfeffer at Stanford

usual_delta = 0.05% 5 percent deltas for non-zero terms

zero_term_delta = 0.00025 % Even smaller delta for zero elements of x

for j = 1:n

y = xin

if y(j) ~= 0

y(j) = (1 + usual_delta)*y(j)

else

y(j) = zero_term_delta

end

v(:,j+1) = y

x(:) = yf = funfcn(x,varargin{:})

fv(1,j+1) = f

end

% sort so v(1,:) has the lowest function value

[fv,j] = sort(fv)

v = v(:,j)

how = 'initial simplex'

itercount = itercount + 1

func_evals = n+1

if prnt == 3

disp(sprintf(' %5.0f%5.0f %12.6g %s', itercount, func_evals, fv(1), how))

elseif prnt == 4

disp(' ')

disp(how)

v

fv

func_evals

end

% OutputFcn and PlotFcns call

if haveoutputfcn || haveplotfcn

[xOutputfcn, optimValues, stop] = callOutputAndPlotFcns(outputfcn,plotfcns,v(:,1),xOutputfcn,'iter',itercount, ...

func_evals, how, fv(:,1),varargin{:})

if stop % Stop per user request.

[x,fval,exitflag,output] = cleanUpInterrupt(xOutputfcn,optimValues)

if prnt >0

disp(output.message)

end

return

end

end

exitflag = 1

% Main algorithm: iterate until

% (a) the maximum coordinate difference between the current best point and the

% other points in the simplex is less than or equal to TolX. Specifically,

% until max(||v2-v1||,||v2-v1||,...,||v(n+1)-v1||) <= TolX,

% where ||.|| is the infinity-norm, and v1 holds the

% vertex with the current lowest valueAND

% (b) the corresponding difference in function values is less than or equal

% to TolFun. (Cannot use OR instead of AND.)

% The iteration stops if the maximum number of iterations or function evaluations

% are exceeded

while func_evals <maxfun &&itercount <maxiter

if max(abs(fv(1)-fv(two2np1))) <= tolf &&...

max(max(abs(v(:,two2np1)-v(:,onesn)))) <= tolx

break

end

% Compute the reflection point

% xbar = average of the n (NOT n+1) best points

xbar = sum(v(:,one2n), 2)/n

xr = (1 + rho)*xbar - rho*v(:,end)

x(:) = xrfxr = funfcn(x,varargin{:})

func_evals = func_evals+1

if fxr <fv(:,1)

% Calculate the expansion point

xe = (1 + rho*chi)*xbar - rho*chi*v(:,end)

x(:) = xefxe = funfcn(x,varargin{:})

func_evals = func_evals+1

if fxe <fxr

v(:,end) = xe

fv(:,end) = fxe

how = 'expand'

else

v(:,end) = xr

fv(:,end) = fxr

how = 'reflect'

end

else % fv(:,1) <= fxr

if fxr <fv(:,n)

v(:,end) = xr

fv(:,end) = fxr

how = 'reflect'

else % fxr >= fv(:,n)

% Perform contraction

if fxr <fv(:,end)

% Perform an outside contraction

xc = (1 + psi*rho)*xbar - psi*rho*v(:,end)

x(:) = xcfxc = funfcn(x,varargin{:})

func_evals = func_evals+1

if fxc <= fxr

v(:,end) = xc

fv(:,end) = fxc

how = 'contract outside'

else

% perform a shrink

how = 'shrink'

end

else

% Perform an inside contraction

xcc = (1-psi)*xbar + psi*v(:,end)

x(:) = xccfxcc = funfcn(x,varargin{:})

func_evals = func_evals+1

if fxcc <fv(:,end)

v(:,end) = xcc

fv(:,end) = fxcc

how = 'contract inside'

else

% perform a shrink

how = 'shrink'

end

end

if strcmp(how,'shrink')

for j=two2np1

v(:,j)=v(:,1)+sigma*(v(:,j) - v(:,1))

x(:) = v(:,j)fv(:,j) = funfcn(x,varargin{:})

end

func_evals = func_evals + n

end

end

end

[fv,j] = sort(fv)

v = v(:,j)

itercount = itercount + 1

if prnt == 3

disp(sprintf(' %5.0f%5.0f %12.6g %s', itercount, func_evals, fv(1), how))

elseif prnt == 4

disp(' ')

disp(how)

v

fv

func_evals

end

% OutputFcn and PlotFcns call

if haveoutputfcn || haveplotfcn

[xOutputfcn, optimValues, stop] = callOutputAndPlotFcns(outputfcn,plotfcns,v(:,1),xOutputfcn,'iter',itercount, ...

func_evals, how, fv(:,1),varargin{:})

if stop % Stop per user request.

[x,fval,exitflag,output] = cleanUpInterrupt(xOutputfcn,optimValues)

if prnt >0

disp(output.message)

end

return

end

end

end % while

x(:) = v(:,1)

fval = fv(:,1)

if prnt == 4,

% reset format

set(0,{'format','formatspacing'},formatsave)

end

output.iterations = itercount

output.funcCount = func_evals

output.algorithm = 'Nelder-Mead simplex direct search'

% OutputFcn and PlotFcns call

if haveoutputfcn || haveplotfcn

callOutputAndPlotFcns(outputfcn,plotfcns,x,xOutputfcn,'done',itercount, func_evals, how, fval, varargin{:})

end

if func_evals >= maxfun

msg = sprintf(['Exiting: Maximum number of function evaluations has been exceeded\n' ...

' - increase MaxFunEvals option.\n' ...

' Current function value: %f \n'], fval)

if prnt >0

disp(' ')

disp(msg)

end

exitflag = 0

elseif itercount >= maxiter

msg = sprintf(['Exiting: Maximum number of iterations has been exceeded\n' ...

' - increase MaxIter option.\n' ...

' Current function value: %f \n'], fval)

if prnt >0

disp(' ')

disp(msg)

end

exitflag = 0

else

msg = ...

sprintf(['Optimization terminated:\n', ...

' the current x satisfies the termination criteria using OPTIONS.TolX of %e \n' ...

' and F(X) satisfies the convergence criteria using OPTIONS.TolFun of %e \n'], ...

tolx, tolf)

if prnt >1

disp(' ')

disp(msg)

end

exitflag = 1

end

output.message = msg

%--------------------------------------------------------------------------

function [xOutputfcn, optimValues, stop] = callOutputAndPlotFcns(outputfcn,plotfcns,x,xOutputfcn,state,iter,...

numf,how,f,varargin)

% CALLOUTPUTANDPLOTFCNS assigns values to the struct OptimValues and then calls the

% outputfcn/plotfcns.

%

% state - can have the values 'init','iter', or 'done'.

% For the 'done' state we do not check the value of 'stop' because the

% optimization is already done.

optimValues.iteration = iter

optimValues.funccount = numf

optimValues.fval = f

optimValues.procedure = how

xOutputfcn(:) = x % Set x to have user expected size

% Call output functions

if ~isempty(outputfcn)

switch state

case {'iter','init'}

stop = callAllOptimOutputFcns(outputfcn,xOutputfcn,optimValues,state,varargin{:})

case 'done'

stop = false

callAllOptimOutputFcns(outputfcn,xOutputfcn,optimValues,state,varargin{:})

otherwise

error('MATLAB:fminsearch:InvalidState', ...

'Unknown state in CALLOUTPUTANDPLOTFCNS.')

end

end

% Call plot functions

if ~isempty(plotfcns)

switch state

case {'iter','init'}

stop = callAllOptimPlotFcns(plotfcns,xOutputfcn,optimValues,state,varargin{:})

case 'done'

stop = false

callAllOptimPlotFcns(plotfcns,xOutputfcn,optimValues,state,varargin{:})

otherwise

error('MATLAB:fminsearch:InvalidState', ...

'Unknown state in CALLOUTPUTANDPLOTFCNS.')

end

end

%--------------------------------------------------------------------------

function [x,FVAL,EXITFLAG,OUTPUT] = cleanUpInterrupt(xOutputfcn,optimValues)

% CLEANUPINTERRUPT updates or sets all the output arguments of FMINBND when the optimization

% is interrupted.

x = xOutputfcn

FVAL = optimValues.fval

EXITFLAG = -1

OUTPUT.iterations = optimValues.iteration

OUTPUT.funcCount = optimValues.funccount

OUTPUT.algorithm = 'golden section search, parabolic interpolation'

OUTPUT.message = 'Optimization terminated prematurely by user.'

%--------------------------------------------------------------------------

function f = checkfun(x,userfcn,varargin)

% CHECKFUN checks for complex or NaN results from userfcn.

f = userfcn(x,varargin{:})

% Note: we do not check for Inf as FMINSEARCH handles it naturally.

if isnan(f)

error('MATLAB:fminsearch:checkfun:NaNFval', ...

'User function ''%s'' returned NaN when evaluated\n FMINSEARCH cannot continue.', ...

localChar(userfcn))

elseif ~isreal(f)

error('MATLAB:fminsearch:checkfun:ComplexFval', ...

'User function ''%s'' returned a complex value when evaluated\n FMINSEARCH cannot continue.', ...

localChar(userfcn))

end

%--------------------------------------------------------------------------

function strfcn = localChar(fcn)

% Convert the fcn to a string for printing

if ischar(fcn)

strfcn = fcn

elseif isa(fcn,'inline')

strfcn = char(fcn)

elseif isa(fcn,'function_handle')

strfcn = func2str(fcn)

else

try

strfcn = char(fcn)

catch

strfcn = '(name not printable)'

end

end

求解线性规划问题,matlab里统一使用linprog函数,其用法是

x = linprog(f,A,b,Aeq,beq,lb,ub)

并且是用来求解最小值的,所以目标函数改为最小值。

这里参数

f=[-40-30-10]

A=[9 7 100.6 1.5 10.6 1.5 -1]

b = [103.25]

lb = zeros(3,1)

[x,fval,exitflag,output,lambda] = linprog(f,A,b,[],[],lb)

=======================

运行结果

x =

1.1111

0.0000

0.0000


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/7746681.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-09
下一篇 2023-04-09

发表评论

登录后才能评论

评论列表(0条)

保存