为什么以下MATLAB代码图像识别准确率一直只保持在20%左右?

为什么以下MATLAB代码图像识别准确率一直只保持在20%左右?,第1张

那个我就厚着脸皮谈一下啊:

数据不充足。如果你的图像数据量较少,或者数据质量不够高,那么模型的准确率就可能不高。你可以尝试增加数据量或者提升数据质量,来提高模型的准确率。

训练次数过少。你的代码中设置了最多 2 次训练,这可能不够模型学习到足够的特征。你可以尝试增加训练次数,来提高模型的准确率。

模型的复杂度过低。你的代码中使用了 VGG-19 网络,但是去掉了最后 3 层,这可能导致模型复杂度过低,无法提取足够多的特征。你可以尝试使用更复杂的模型,或者保留原来的最后 3 层,来提高模型的准确率。

训练参数不合适。你的代码中使用的训练参数(如学习率、批量大小)可能不合适,导致模型训练不够有效。你可以尝试调整这些参数,来提高模型的准确率。

希望这些信息能给到你一些启发。

什么是图像识别?这个问题如果乍一问出,很多人可能都会愣一下,但一细想,便能说出很多很多的应用场景,想什么二维码啊,人脸识别啊,网站识图啊之类的。那么又有多少人去真正了解过这项技术呢?今天就让我给您简单介绍一下吧!

计算机识别一张图时会将其转化为数字,通过「训练」计算机可以知道这些数字代表的含义,但早期图像识别技术还不够发达,识别很容易因图像发生微小的变化而失灵。

得益于上世纪80年代提出的卷积神经网络(简称CNN)算法,图像识别技术得到了质的飞跃。要进行图像识别,我们首先依然需要提取图像的特征,提取图像特征也即对其进行数据化分析,这一过程中需要借助的数学方法称为卷积。

以一个最简单的一维图形C为例,计算机在识别任何图像之前都需要将其转化为数字,如下那么计算机是如何做到仅凭那些数字就认出原图像的呢?这里就需要借助「卷积核」进行卷积运算,提取「图像」(即图右的数字化“图像”)的特征。卷积核类似于计算机最初将图像转化成的数字方块,但卷积核一般都是3×3或5×5的方块,3×3方块中有三个方块是有值的(即值为1),卷积核是计算机在学习的过程中,根据所得数据调节卷积核,卷积核可以有很多个。有了卷积核,我们就能通过在图形数字方块与卷积核之间做卷积运算,计算并得到特征图。

第一步卷积完成,得到初步的特征图。之后通过「池化」与「激活」,对特征图进行简化,也即对特征图中有特征部分(即有值部分)进行放大,这一步显然是为精准识别图形特征服务的。

要识别的图形越复杂,特征图得越精准,因此需要多次卷积、池化与激活。经过上述这些步骤,我们可以得到图像在各平面与维度中的特征,也可以得到轮廓、颜色等方面的特征。我们把这些特征信息接入计算机进行训练,就能判断这些众多特征图代表的图形是什么了。

当我们把那些特征信息/数据传输到计算机上,让它通过不断的「机器学习」,不断自行调整卷积核和参数,最终就能分辨出物体。这也是为什么,我们戴着口罩或眼睛,或者盖住一些脸部器官也能被机器所识别,这还是因为计算机早就收集到了我们足够多的面部特征。

科技融入生活,是我们大家都非常喜闻乐见的事情,同时,科技也改变了许多我们的工作生活方式,当然也有不少的科学技术是因为时代的背景应运而生,就好像在疫情期间出现的各种“数字哨兵”人脸识别健康码一体式设备。而汉玛智慧作为人脸识别设备和解决方案的生产厂家,也希望和大家一起努力,让更方便的科技为我们的生活增添色彩!


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/7790225.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-09
下一篇 2023-04-09

发表评论

登录后才能评论

评论列表(0条)

保存