模糊c均值算法matlab程序

模糊c均值算法matlab程序,第1张

function [center, U, obj_fcn] = FCMClust(data, cluster_n, options)

% FCMClust.m 采用模糊C均值对数据集data聚为cluster_n类

%

% 用法:

% 1. [center,U,obj_fcn] = FCMClust(Data,N_cluster,options)

% 2. [center,U,obj_fcn] = FCMClust(Data,N_cluster)

%

% 输入:

% data---- nxm矩阵,表示n个样本,每个样本具有m的维特征值

% N_cluster ---- 标量,表示聚合中心数目,即类别数

% options ---- 4x1矩阵,其中

% options(1): 隶属度矩阵U的指数,>1 (缺省值: 2.0)

% options(2): 最大迭代次数 (缺省值: 100)

% options(3): 隶属度最小变化量,迭代终止条件 (缺省值: 1e-5)

% options(4): 每次迭代是否输出信息标志(缺省值: 1)

% 输出:

% center ---- 聚类中心

% U ---- 隶属度矩阵

% obj_fcn ---- 目标函数值

% Example:

% data = rand(100,2)

% [center,U,obj_fcn] = FCMClust(data,2)

% plot(data(:,1), data(:,2),'o')

% hold on

% maxU = max(U)

% index1 = find(U(1,:) == maxU)

% index2 = find(U(2,:) == maxU)

% line(data(index1,1),data(index1,2),'marker','*','color','g')

% line(data(index2,1),data(index2,2),'marker','*','color','r')

% plot([center([1 2],1)],[center([1 2],2)],'*','color','k')

% hold off

if nargin ~= 2 &nargin ~= 3,%判断输入参数个数只能是2个或3个

error('Too many or too few input arguments!')

end

data_n = size(data, 1)% 求出data的第一维(rows)数,即样本个数

in_n = size(data, 2) % 求出data的第二维(columns)数,即特征值长度

% 默认 *** 作参数

default_options = [2% 隶属度矩阵U的指数

100 % 最大迭代次数

1e-5 % 隶属度最小变化量,迭代终止条件

1]% 每次迭代是否输出信息标志

if nargin == 2,

options = default_options

else %分析有options做参数时候的情况

% 如果输入参数个数是二那么就调用默认的option

if length(options) <4, %如果用户给的opition数少于4个那么其他用默认值

tmp = default_options

tmp(1:length(options)) = options

options = tmp

end

% 返回options中是数的值为0(如NaN),不是数时为1

nan_index = find(isnan(options)==1)

%将denfault_options中对应位置的参数赋值给options中不是数的位置.

options(nan_index) = default_options(nan_index)

if options(1) <= 1, %如果模糊矩阵的指数小于等于1

error('The exponent should be greater than 1!')

end

end

%将options 中的分量分别赋值给四个变量

expo = options(1) % 隶属度矩阵U的指数

max_iter = options(2) % 最大迭代次数

min_impro = options(3) % 隶属度最小变化量,迭代终止条件

display = options(4) % 每次迭代是否输出信息标志

obj_fcn = zeros(max_iter, 1)% 初始化输出参数obj_fcn

U = initfcm(cluster_n, data_n)% 初始化模糊分配矩阵,使U满足列上相加为1,

% Main loop 主要循环

for i = 1:max_iter,

%在第k步循环中改变聚类中心ceneter,和分配函数U的隶属度值

[U, center, obj_fcn(i)] = stepfcm(data, U, cluster_n, expo)

if display,

fprintf('FCM:Iteration count = %d, obj. fcn = %f\n', i, obj_fcn(i))

end

% 终止条件判别

if i >1,

if abs(obj_fcn(i) - obj_fcn(i-1)) <min_impro,

break

end,

end

end

iter_n = i% 实际迭代次数

obj_fcn(iter_n+1:max_iter) = []

% 子函数

function U = initfcm(cluster_n, data_n)

% 初始化fcm的隶属度函数矩阵

% 输入:

% cluster_n ---- 聚类中心个数

% data_n ---- 样本点数

% 输出:

% U ---- 初始化的隶属度矩阵

U = rand(cluster_n, data_n)

col_sum = sum(U)

U = U./col_sum(ones(cluster_n, 1), :)

% 子函数

function [U_new, center, obj_fcn] = stepfcm(data, U, cluster_n, expo)

% 模糊C均值聚类时迭代的一步

% 输入:

% data---- nxm矩阵,表示n个样本,每个样本具有m的维特征值

% U ---- 隶属度矩阵

% cluster_n ---- 标量,表示聚合中心数目,即类别数

% expo---- 隶属度矩阵U的指数

% 输出:

% U_new ---- 迭代计算出的新的隶属度矩阵

% center ---- 迭代计算出的新的聚类中心

% obj_fcn ---- 目标函数值

mf = U.^expo % 隶属度矩阵进行指数运算结果

center = mf*data./((ones(size(data, 2), 1)*sum(mf'))')% 新聚类中心(5.4)式

dist = distfcm(center, data) % 计算距离矩阵

obj_fcn = sum(sum((dist.^2).*mf)) % 计算目标函数值 (5.1)式

tmp = dist.^(-2/(expo-1))

U_new = tmp./(ones(cluster_n, 1)*sum(tmp)) % 计算新的隶属度矩阵 (5.3)式

% 子函数

function out = distfcm(center, data)

% 计算样本点距离聚类中心的距离

% 输入:

% center ---- 聚类中心

% data ---- 样本点

% 输出:

% out---- 距离

out = zeros(size(center, 1), size(data, 1))

for k = 1:size(center, 1), % 对每一个聚类中心

% 每一次循环求得所有样本点到一个聚类中心的距离

out(k, :) = sqrt(sum(((data-ones(size(data,1),1)*center(k,:)).^2)',1))

end

我贴部分FCM的Matlab代码:

expo = options(1) % Exponent for U

max_iter = options(2) % Max. iteration

min_impro = options(3) % Min. improvement

display = options(4) % Display info or not

obj_fcn = zeros(max_iter, 1)% Array for objective function

U = initfcm(cluster_n, data_n) % Initial fuzzy partition

% Main loop

for i = 1:max_iter,

[U, center, obj_fcn(i)] = stepfcm(data, U, cluster_n, expo)

if display,

fprintf('Iteration count = %d, obj. fcn = %f\n', i, obj_fcn(i))

end

% check termination condition

if i >1,

if abs(obj_fcn(i) - obj_fcn(i-1)) <min_impro, breakend,

end

end

其中

U = initfcm(cluster_n, data_n) % Initial fuzzy partition

这个就是初始化划分矩阵,随机产生一个隶属度矩阵,

代码如下:

U = rand(cluster_n, data_n)

col_sum = sum(U)

U = U./col_sum(ones(cluster_n, 1), :)

上面就是它初始化的一个隶属度矩阵,

cluster_n行,data_n列。

即一列中从上到下表示每个样本隶属与每一类的隶属度。

然后在算法中不断迭代,

最后得到的还是如此大的一个矩阵,代表每个样本隶属与每一类的隶属度

然后选择最大的那个就是,它就属于那一类。

function Z=hecheng(X,X)

[m,m]=size(X)z=zeros(m,m)p4=zeros(1,m);

for i=1:m

for j=1:m

for k=1:m

p4(1,k)=min(X(i,k),Y(k,j))

end

Z(i,j)=max(p4)

end

end

应该能用!


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/7799575.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-10
下一篇 2023-04-10

发表评论

登录后才能评论

评论列表(0条)

保存